Preprint Review Version 2 Preserved in Portico This version is not peer-reviewed

Formulation in Surfactant Systems: From-Winsor-to-HLDN

Version 1 : Received: 27 February 2022 / Approved: 1 March 2022 / Online: 1 March 2022 (09:25:12 CET)
Version 2 : Received: 1 March 2022 / Approved: 2 March 2022 / Online: 2 March 2022 (07:30:26 CET)

A peer-reviewed article of this Preprint also exists.

Salager, J.-L.; Marquez, R.; Bullon, J.; Forgiarini, A. Formulation in Surfactant Systems: From-Winsor-to-HLDN. Encyclopedia 2022, 2, 778-842. Salager, J.-L.; Marquez, R.; Bullon, J.; Forgiarini, A. Formulation in Surfactant Systems: From-Winsor-to-HLDN. Encyclopedia 2022, 2, 778-842.

Abstract

Formulation is an ancient concept, although the word has been used only recently. The first formulations made our civilization advance by inventing bronze, steel, and gunpowder; then, it was used in medieval alchemy. When chemistry became a science and with the golden age of organic synthesis, the second formulation period began. This made it possible to create new chemical species and new combinations “à la carte.” However, the research and developments were still carried out by trial and error. Finally, the third period of formulation history began after World War II, when the properties of a system were associated with its ingredients and the way they were assembled or combined. Therefore, the formulation and the systems’ phenomenology were related to the generation of some synergy to obtain a commercial product. Winsor’s formulation studies in the 1950s were enlightening for academy and industries that were studying empirically surfactant-oil-water (SOW) systems. One of its key characteristics was how the interfacial interaction of the adsorbed surfactant with oil and water phases could be equal by varying the physicochemical formulation of the system. Then, Hansen’s solubility parameter in the 1960s helped to reach a further understanding of the affinity of some substances to make them suitable to oil and water phases. In the 1970s, researchers such as Shinoda and Kunieda, and different groups working in Enhanced Oil Recovery (EOR), among them Schechter and Wade’s group at the University of Texas, made formulation become a science by using semiquantitative correlations to attain specific characteristics in a system (e.g., low oil-water interfacial tension, formulation of a stable O/W or W/O emulsion, or high-performance solubilization in a bicontinuous microemulsion system at the so-called optimum formulation). Nowadays, over 40 years of studies with the hydrophilic-lipophilic deviation equation (HLD) have made it feasible for formulators to improve products in many different applications using surfactants to attain a target system using HLD in its original or its normalized form, i.e., HLDN. Thus, it can be said that there is still current progress being made towards an interdisciplinary applied science with numerical guidelines. In the present work, the state-of-the-art of formulation in multiphase systems containing two immiscible phases like oil and water, and therefore systems with heterogeneous or micro-heterogeneous interfaces, is discussed. Surfactants, from simple to complex or polymeric, are generally present in such systems to solve a wide variety of problems in many areas. Some significant cases are presented here as examples dealing with petroleum, foods, pharmaceutics, cosmetics, detergency, and other products occurring as dispersions, emulsions, or foams, that we find in our everyday lives.

Keywords

colloids; interface; formulation; surfactant; cosmetics; petroleum; food; paint; pharmaceutics; emulsions; foams; dispersions; HLDN

Subject

Chemistry and Materials Science, Chemical Engineering

Comments (2)

Comment 1
Received: 2 March 2022
Commenter: Ronald Marquez
Commenter's Conflict of Interests: Author
Comment: Formatting
+ Respond to this comment
Response 1 to Comment 1
Received: 18 April 2022
Commenter: (Click to see Publons profile: )
The commenter has declared there is no conflict of interests.
Comment: A peer-reviewed article of this preprint has been published https://www.mdpi.com/2673-8392/2/2/54

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 2
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.