Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar

Version 1 : Received: 22 February 2022 / Approved: 24 February 2022 / Online: 24 February 2022 (10:46:46 CET)

A peer-reviewed article of this Preprint also exists.

Intarabut, D.; Sukontasukkul, P.; Phoo-ngernkham, T.; Zhang, H.; Yoo, D.-Y.; Limkatanyu, S.; Chindaprasirt, P. Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials 2022, 12, 943. Intarabut, D.; Sukontasukkul, P.; Phoo-ngernkham, T.; Zhang, H.; Yoo, D.-Y.; Limkatanyu, S.; Chindaprasirt, P. Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials 2022, 12, 943.

Abstract

In this study, the influence of graphene oxide nanoparticles on the bond-slip behavior of fiber and fly ash based geopolymer paste was examined. Geopolymer paste incorporating graphene oxide nanoparticles solution was cast in half briquetted specimens and embedded with a fiber. Three types of fibers were used: steel, polypropylene, and basalt. The pullout test was performed at two distinct speeds: 1 mm/second and 3 mm/second. Results showed that the addition of graphene oxide increased the compressive strength of geopolymer by about 7%. The bond-slip responses of fibers embedded in geopolymer mixed with graphene oxide exhibited higher peak stress and toughness as compared to those embedded in normal geopolymer. Each fiber type also showed different mode of failure. Both steel and polypropylene fibers showed full bond-slip responses due to their high ductility. Basalt fiber, on the other hand, because of its brittleness, failed by fiber fracture mode which showed no-slip in pull out responses. Both bond strength and toughness were found to be rate sensitive. The sensitivity was higher in graphene oxide/geopolymer than in conventional geopolymer.

Keywords

Geopolymer; Graphene oxide; Single fiber pullout; Bond-slip; Rate sensitive

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.