Preprint
Article

This version is not peer-reviewed.

The Singularity of Legendre Functions of the First Kind as a Consequence of the Symmetry of Legendre’s Equation

A peer-reviewed article of this preprint also exists.

Submitted:

06 March 2022

Posted:

11 March 2022

You are already at the latest version

Abstract
Legendre’s equation is key in various branches of physics. Its general solution is a linear function space, spanned by the Legendre functions of first and second kind. In physics however, commonly the only acceptable members of this set are the Legendre polynomials. Quantization of the eigenvalues of Legendre’s operator is a consequence of this. We present and explain a stand-alone, in-depth argument for rejecting all solutions of Legendre’s equation, but the polynomial ones, in physics. We show that the combination of the linearity, the mirror symmetry and the signature of the regular singular points of Legendre’s equation is quintessential to the argument. We demonstrate that the evenness or oddness of the Legendre polynomials is a consequence of the same ingredients.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated