Preprint
Hypothesis

Storage of biochemical information as the start of life: A hypothetical model for the development of the first cell

Altmetrics

Downloads

461

Views

4191

Comments

0

This version is not peer-reviewed

Submitted:

21 January 2022

Posted:

25 January 2022

Read the latest preprint version here

Alerts
Abstract
The storage of biochemical information, which is a prerequisite for the development of the first cell, is an unsolved problem affecting all concepts of the origin of life. However, if the protected environment in the continental crust is taken into account, completely new possibilities emerge for identifying processes that may have been crucial for the formation of the first cell. Under this background, we can hypothesize that, before cellular life began, a self-sustaining cycle of molecular reaction steps with information storage in RNA existed outside of a cell. This cycle was made possible in an open system bound to gas-permeable tectonic fracture zones with a high proportion of CO2 and N2. The formation of peptides and vesicles in supercritical CO2 and the chemical evolution of peptides have already been proven for the upper continental crust. Further considerations include the interactions of vesicles with catalytic peptides and the emergence of proto-tRNA. In combination with the formation of proto-tRNA synthetases, which consist of only two amino acid species and associated proto-tRNAs, the first RNA as an information storage system could have been formed with the information of proto-enzymes.
Keywords: 
Subject: Chemistry and Materials Science  -   Organic Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated