Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Proteomic Profiling and Rhizosphere-Associated Microbial Communities Reveal Adaptive Mechanisms of Dioclea Apurensis Kunth in Eastern Amazon’s Rehabilitating Minelands

Version 1 : Received: 20 January 2022 / Approved: 24 January 2022 / Online: 24 January 2022 (10:07:29 CET)

A peer-reviewed article of this Preprint also exists.

Nascimento, S.V.; Costa, P.H.O.; Herrera, H.; Caldeira, C.F.; Gastauer, M.; Ramos, S.J.; Oliveira, G.; Valadares, R.B.S. Proteomic Profiling and Rhizosphere-Associated Microbial Communities Reveal Adaptive Mechanisms of Dioclea apurensis Kunth in Eastern Amazon’s Rehabilitating Minelands. Plants 2022, 11, 712. Nascimento, S.V.; Costa, P.H.O.; Herrera, H.; Caldeira, C.F.; Gastauer, M.; Ramos, S.J.; Oliveira, G.; Valadares, R.B.S. Proteomic Profiling and Rhizosphere-Associated Microbial Communities Reveal Adaptive Mechanisms of Dioclea apurensis Kunth in Eastern Amazon’s Rehabilitating Minelands. Plants 2022, 11, 712.

Abstract

Dioclea apurensis Kunth is native to ferruginous rocky outcrops (known as canga) in the eastern Amazon. Native cangas are considered hotspots of biological diversity and have one of the largest iron ore deposits in the world. There, D. apurensis can grow in post-mining areas where molecular mechanisms and rhizospheric interactions with soil microorganisms are expected to contribute to their establishment in rehabilitating minelands. In this study, we compare the root proteomic profile and rhizosphere-associated bacterial and fungal communities of D. apurensis growing in canga and a rehabilitating mineland to characterize the main mechanisms that allow the growth and establishment in post-mining areas. The results showed that proteins involved in response to oxidative stress, drought, excess of iron, and phosphorus deficiency were more accumulated in canga and, therefore, helped explain its high establishment rates in rehabilitating minelands. Rhizospheric selectivity of microorganisms was more evident in canga. The microbial community structure was mostly different between the two habitats, denoting that despite having its preferences, D. apurensis can associate with beneficial soil microorganisms without specificity. Therefore, its good performance in rehabilitating minelands can also be improved or attributed to its ability to cope with beneficial soil-borne microorganisms. Native plants with such adaptations must be used to enhance the rehabilitation process.

Keywords

abiotic stress; proteomic; rehabilitating minelands; rhizosphere; symbiosis

Subject

Biology and Life Sciences, Ecology, Evolution, Behavior and Systematics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.