Aulitto, M.; Martinez-Alvarez, L.; Fiorentino, G.; Limauro, D.; Peng, X.; Contursi, P. A Comparative Analysis of Weizmannia coagulans Genomes Unravels the Genetic Potential for Biotechnological Applications. Int. J. Mol. Sci.2022, 23, 3135.
Aulitto, M.; Martinez-Alvarez, L.; Fiorentino, G.; Limauro, D.; Peng, X.; Contursi, P. A Comparative Analysis of Weizmannia coagulans Genomes Unravels the Genetic Potential for Biotechnological Applications. Int. J. Mol. Sci. 2022, 23, 3135.
Aulitto, M.; Martinez-Alvarez, L.; Fiorentino, G.; Limauro, D.; Peng, X.; Contursi, P. A Comparative Analysis of Weizmannia coagulans Genomes Unravels the Genetic Potential for Biotechnological Applications. Int. J. Mol. Sci.2022, 23, 3135.
Aulitto, M.; Martinez-Alvarez, L.; Fiorentino, G.; Limauro, D.; Peng, X.; Contursi, P. A Comparative Analysis of Weizmannia coagulans Genomes Unravels the Genetic Potential for Biotechnological Applications. Int. J. Mol. Sci. 2022, 23, 3135.
Abstract
The production of bio-chemicals requires the use of microbial strains with efficient substrate conversion and excellent environmental robustness, such as Bacillus coagulans spp. So far the genomes of about 50 strains have been sequenced. Herein, we report a comparative genomic analysis of nine strains on the full repertoire of CAZymes, secretion systems, and resistance mechanisms to environmental challenges. Moreover, B. coagulans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immune system along with CRISPR-associated Cas) genes, was also analysed. Overall, this study expands our understanding of the strains genomic diversity of B. coagulans to fully exploit its potential in biotechnological applications.
Keywords
B. coagulans; CAZymes; Bacteriocins; CRISPR-Cas systems.
Subject
BIOLOGY, Other
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.