Žiauka, J.; Striganavičiūtė, G.; Szyp-Borowska, I.; Kuusienė, S.; Niemczyk, M. Differences in Environmental and Hormonal Regulation of Growth Responses in Two Highly Productive Hybrid Populus Genotypes. Forests2022, 13, 183.
Žiauka, J.; Striganavičiūtė, G.; Szyp-Borowska, I.; Kuusienė, S.; Niemczyk, M. Differences in Environmental and Hormonal Regulation of Growth Responses in Two Highly Productive Hybrid Populus Genotypes. Forests 2022, 13, 183.
Žiauka, J.; Striganavičiūtė, G.; Szyp-Borowska, I.; Kuusienė, S.; Niemczyk, M. Differences in Environmental and Hormonal Regulation of Growth Responses in Two Highly Productive Hybrid Populus Genotypes. Forests2022, 13, 183.
Žiauka, J.; Striganavičiūtė, G.; Szyp-Borowska, I.; Kuusienė, S.; Niemczyk, M. Differences in Environmental and Hormonal Regulation of Growth Responses in Two Highly Productive Hybrid Populus Genotypes. Forests 2022, 13, 183.
Abstract
Phenotypic plasticity in response to adverse conditions determines plant productivity and survival. The aim of this study was to test if two highly productive Populus genotypes, characterized by different in vitro etiolation patterns, differ also in their responses to hormones gibberellin (GA) and abscisic acid (ABA), and to a GA biosynthesis inhibitor paclobutrazol (PBZ). The experiments on shoot cultures of ‘Hybrida 275’ (abbr. H275; Populus maximowiczii × P. trichocarpa) and IBL 91/78 (Populus tremula × P. alba) were conducted either by modulating the physical in vitro environment or by adding specific chemicals to the nutrient medium. Our results show that there are significant differences between the studied genotypes in environmental and hormonal regulation of growth responses. The genotype H275, which responded to darkness with PBZ-inhibitable shoot elongation, was unable to recover its growth after treatment with ABA. In contrast, the genotype IBL 91/78, whose shoot elongation was not affected either by darkness or PBZ treatment, recovered so well after the ABA treatment that, when rooted subsequently, it developed longer shoots and roots than without ABA treatment. Our results indicate that GA catabolism and repressive signaling provide an important pathway to control growth and physiological adaptation in response to immediate or impending adverse conditions. These observations can help breeders define robust criteria for identifying genotypes with high resistance and productivity and highlight where genotypes exhibit susceptibility to stress.
Keywords
dark treatment; hybrid poplar; plant hormone; rooting; shoot culture
Subject
BIOLOGY, Forestry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.