Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

One-Point Statistics Matter in Extended Cosmologies

Version 1 : Received: 8 December 2021 / Approved: 10 December 2021 / Online: 10 December 2021 (07:31:46 CET)

A peer-reviewed article of this Preprint also exists.

Gough, A.; Uhlemann, C. One-Point Statistics Matter in Extended Cosmologies. Universe 2022, 8, 55. Gough, A.; Uhlemann, C. One-Point Statistics Matter in Extended Cosmologies. Universe 2022, 8, 55.

Abstract

The late universe contains a wealth of information about fundamental physics and gravity, wrapped up in non-Gaussian fields. To make use of as much information as possible it is necessary to go beyond two-point statistics. Rather than going to higher order N-point correlation functions, we demonstrate that the probability distribution function (PDF) of spheres in the matter field (a one-point function) already contains a significant amount of this non-Gaussian information. The matter PDF dissects different density environments which are lumped together in two-point statistics, making it particularly useful for probing modifications of gravity or expansion history. Our approach in Cataneo et. al. 2021 extends the success of Large Deviation Theory for predicting the matter PDF in ΛCDM in these “extended” cosmologies. A Fisher forecast demonstrates the information content in the matter PDF via constraints for a Euclid-like survey volume combining the 3D matter PDF with the 3D matter power spectrum. Adding the matter PDF halves the uncertainties on parameters in an evolving dark energy model, relative to the power spectrum alone. Additionally, the matter PDF contains enough non-linear information to substantially increase the detection significance of departures from General Relativity, with improvements up to six times the power spectrum alone. This analysis demonstrates that the matter PDF is a promising non-Gaussian statistic for extracting cosmological information, particularly for beyond ΛCDM models.

Keywords

cosmology; theory; large scale structure of the Universe; analytical methods

Subject

Physical Sciences, Astronomy and Astrophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.