Preprint
Article

This version is not peer-reviewed.

A Combined Metrics Approach to Cloud Service Reliability using Artificial Intelligence

A peer-reviewed article of this preprint also exists.

Submitted:

25 November 2021

Posted:

29 November 2021

You are already at the latest version

Abstract
Identifying and anticipating potential failures in the cloud is an effective method for increasing cloud reliability and proactive failure management. Many studies have been conducted to predict potential failure, but none have combined SMART (Self-Monitoring, Analysis, and Reporting Technology) hard drive metrics with other system metrics such as CPU utilisation. Therefore, we propose a combined metrics approach for failure prediction based on Artificial Intelligence to improve reliability. We tested over 100 cloud servers’ data and four AI algorithms: Random Forest, Gradient Boosting, Long-Short-Term Memory, and Gated Recurrent Unit. Our experimental result shows the benefits of combining metrics, outperforming state-of-the-art.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated