Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

DNA Environment of Centromeres and Non-homologous Chromosomes Interactions in Mouse

Version 1 : Received: 22 November 2021 / Approved: 23 November 2021 / Online: 23 November 2021 (15:58:17 CET)

A peer-reviewed article of this Preprint also exists.

Spangenberg, V.; Losev, M.; Volkhin, I.; Smirnova, S.; Nikitin, P.; Kolomiets, O. DNA Environment of Centromeres and Non-Homologous Chromosomes Interactions in Mouse. Cells 2021, 10, 3375. Spangenberg, V.; Losev, M.; Volkhin, I.; Smirnova, S.; Nikitin, P.; Kolomiets, O. DNA Environment of Centromeres and Non-Homologous Chromosomes Interactions in Mouse. Cells 2021, 10, 3375.

Abstract

Pericentromeric regions of chromosomes enriched in tandemly repeated satellite DNA although representing a significant part of eukaryotic genomes are still understudied mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability and evolution. Thus, the idea of satellite DNA as a junk part of the genome was refuted. Integration of data about molecular composition, chromosome behaviour and details of in situ organization of pericentromeric regions is of great interest. The objective of this work was a cytogenetic analysis of the interactions of pericentromeric regions non-homologous chromosomes in mouse spermatocytes using immuno-FISH. We analysed two events: the associations between cerntomeric regions of X chromosome and autosomes, and associations between centromeric regions of autosomal bivalents forming chromocenters. We conclude that X chromosome form temporary synaptic associations with different autosomes in early meiotic prophase I which normally can be found at pachytene-diplotene without signs of pachytene arrest. These associations are formed between the satellite DNA-enriched centomeric regions of X chromosome and different autosomes but not involve the satellite-poor centromeric region of Y-chromosome. We suggest the mechanism of X chromosome competitive replacement from such associations during synaptic correction. We showed that centromeric region of the X chromosome remains free of γH2Ax-dependent chromatin inactivation, while Y chromosome is completely inactivated. This findings highlights the predominant role of associations between satellite DNA-enriched regions of different chromosomes including X. We assume that X-autosome temporary associations is a manifestation of an additional synaptic disorders checkpoint. These associations are normally corrected before the late diplotene. We revealed that the intense spreading conditions applied to the spermatocytes I nuclei did not lead to destruction of stretched chromatin fibers i.e. elongated chromocenters enriched in satellite DNA. Revealed by us tight associations between pericentromeric regions of different autosomal bivalents and X chromosome may represent the basis for repeat stability maintenance in autosomes an X chromosome. The consequences of our findings are discussed. We obtained the preparations of mouse spermatocytes nuclei in the meiotic prophase I using two approaches: standard and extremely intense surface spread techniques. Using immuno-FISH we visualized tandemly repeated mouse Major and Minor satellite DNA located in the pericentromeric regions of chromosomes and performed a morphological comparison of the standard- and intensely spreaded meiotic nuclei. Based on our results, we assume the remarkable strength of the chromocenter-mediated associations, “chromatin “bridges”, between different bivalents at the pachytene and diplotene stages. We have demonstrated that the chromocenter “bridges” between the centromeric ends of meiotic bivalents are enriched in both tandemly repeated Major and Minor satellite DNA. Association of centromeric regions of autosomal bivalents and X-chromosome but not with Y-chromosome correlates with the absence of Major and Minor satellites on Y-chromosome. We suggest that revealed tight associations between pericentromeric regions of bivalents may represent the network-like system providing dynamic stability of chromosomal territories, as well as add new data for the hypothesis of ectopic recombination in these regions which supports sequence homogeneity between non-homologous chromosomes and does not contradict the meiotic restrictions imposed by the crossing-over interference near centromeres. We conclude that nuclear architecture in meio-sis may play an essential role in contacts between the non-homologous chromosomes providing the specific characteristics of pericentromeric DNA.

Keywords

Prophase I of meiosis; chromatin; synaptonemal complex; chromosome; satellite DNA; chromocenter; nuclear architecture; MSCI; sex chromosomes; interactions of non-homologous chromosomes; chromatin silencing

Subject

Biology and Life Sciences, Animal Science, Veterinary Science and Zoology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.