Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Lignocellulose-Degrading Enzymes: A Biotechnology Platform for Ferulic Acid Production from Agro-Industrial Side Streams

Version 1 : Received: 5 November 2021 / Approved: 8 November 2021 / Online: 8 November 2021 (12:04:08 CET)

A peer-reviewed article of this Preprint also exists.

Radenkovs, V.; Juhnevica-Radenkova, K.; Kviesis, J.; Lazdina, D.; Valdovska, A.; Vallejo, F.; Lacis, G. Lignocellulose-Degrading Enzymes: A Biotechnology Platform for Ferulic Acid Production from Agro-Industrial Side Streams. Foods 2021, 10, 3056. Radenkovs, V.; Juhnevica-Radenkova, K.; Kviesis, J.; Lazdina, D.; Valdovska, A.; Vallejo, F.; Lacis, G. Lignocellulose-Degrading Enzymes: A Biotechnology Platform for Ferulic Acid Production from Agro-Industrial Side Streams. Foods 2021, 10, 3056.

Abstract

Biorefining by enzymatic hydrolysis (EH) of lignocellulosic waste material due to low costs and affordability has received enormous interest amongst scientists as a potential strategy suitable for the production of bioactive ingredients and chemicals. In the present study, a sustainable and eco-friendly approach to the extraction of bound ferulic acid (FA) has been demonstrated using a single-step EH by a mixture of lignocellulose-degrading enzymes. For comparative purposes of the efficiency of EH, an online SFE-SFC-MS extraction and analysis approach was applied. The experimental results demonstrated up to 369.3 mg 100 g−1 FA released from rye bran after 48 h EH with Viscozyme L. The EH of wheat and oat bran with Viscoferm for 48 h resulted in 255.1 and 33.5 mg 100 g−1 of FA, respectively. The extraction of FA from bran matrix using the SFE-CO2-EtOH delivered up to 464.3 mg 100 g−1 of FA, though the extractability varied depending on the parameters used. The 10-fold and 30-fold scale-up experiments confirmed the applicability of EH as a bioprocessing method valid for industrial-scale. The highest yield of FA in both scale-up experiments was obtained from rye bran after 48 h of EH with Viscozyme L. In purified extracts, the absence of xylose, arabinose, and glucose as final degradation products of lignocellulose was proven by a HPLC-RID system. Up to 94.0% purity of FA was achieved by SPE using the polymeric reversed-phase Strata X column and 50% EtOH as eluent.

Keywords

biorefining; bran; enzymatic hydrolysis; green-extraction; hydroxycinnamates; sustainability; valorization

Subject

Biology and Life Sciences, Biology and Biotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.