Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Glial-Neuronal Interactions in Pathogenesis and Treatment of Spinal Cord Injury

Version 1 : Received: 3 November 2021 / Approved: 5 November 2021 / Online: 5 November 2021 (11:14:51 CET)

A peer-reviewed article of this Preprint also exists.

Lukacova, N.; Kisucka, A.; Kiss Bimbova, K.; Bacova, M.; Ileninova, M.; Kuruc, T.; Galik, J. Glial-Neuronal Interactions in Pathogenesis and Treatment of Spinal Cord Injury. Int. J. Mol. Sci. 2021, 22, 13577. Lukacova, N.; Kisucka, A.; Kiss Bimbova, K.; Bacova, M.; Ileninova, M.; Kuruc, T.; Galik, J. Glial-Neuronal Interactions in Pathogenesis and Treatment of Spinal Cord Injury. Int. J. Mol. Sci. 2021, 22, 13577.

Abstract

Traumatic spinal cord injury (SCI) elicits an acute inflammatory response which comprises numerous cell populations. It is driven by the immediate response of macro-phages and reactive M1 microglia, which triggers activation of genes responsible for the dysregulated microenvironment within the lesion site and in the spinal cord parenchyma immediately adjacent to the lesion. Recently published data indicate that microglia induces astrocyte activation and determines the fate of astrocytes. Conversely, astrocytes have the potency to trigger microglial activation and control their cellular functions. Here we review current information about the release of diverse signaling molecules (pro-inflammatory vs anti-inflammatory) in individual cell phenotypes (microglia, astrocytes, blood inflammatory cells) in acute and subacute SCI stages, and how they contribute to delayed neuronal death in a the surrounding spinal cord tissue which is spared and functional but reactive. In addition, temporal correlation in progressive degeneration of neurons and astrocytes and their functional interactions after SCI are discussed. Finally, the review highlight the time-dependent transformation of reactive mi-croglia (M1) and astrocytes (A1) into their neuroprotective phenotypes (M2a, M2c and A2) which are crucial for spontaneous post-SCI locomotor recovery. We also provide sug-gestions on how to increase functional outcome after SCI and discuss key therapeutic approaches.

Keywords

microglia and astrocytes phenotypes; intercellular crosstalk; lesion microenvironment; neuroinflammation; in vivo glia-to neuron reprogramming; subpial delivery; gut dysbiosis; electrostimulation; rehabilitation; neuroprotective strategies

Subject

Biology and Life Sciences, Cell and Developmental Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.