Preprint
Review

This version is not peer-reviewed.

Glial-Neuronal Interactions in Pathogenesis and Treatment of Spinal Cord Injury

A peer-reviewed article of this preprint also exists.

Submitted:

03 November 2021

Posted:

05 November 2021

You are already at the latest version

Abstract
Traumatic spinal cord injury (SCI) elicits an acute inflammatory response which comprises numerous cell populations. It is driven by the immediate response of macro-phages and reactive M1 microglia, which triggers activation of genes responsible for the dysregulated microenvironment within the lesion site and in the spinal cord parenchyma immediately adjacent to the lesion. Recently published data indicate that microglia induces astrocyte activation and determines the fate of astrocytes. Conversely, astrocytes have the potency to trigger microglial activation and control their cellular functions. Here we review current information about the release of diverse signaling molecules (pro-inflammatory vs anti-inflammatory) in individual cell phenotypes (microglia, astrocytes, blood inflammatory cells) in acute and subacute SCI stages, and how they contribute to delayed neuronal death in a the surrounding spinal cord tissue which is spared and functional but reactive. In addition, temporal correlation in progressive degeneration of neurons and astrocytes and their functional interactions after SCI are discussed. Finally, the review highlight the time-dependent transformation of reactive mi-croglia (M1) and astrocytes (A1) into their neuroprotective phenotypes (M2a, M2c and A2) which are crucial for spontaneous post-SCI locomotor recovery. We also provide sug-gestions on how to increase functional outcome after SCI and discuss key therapeutic approaches.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated