Preprint
Article

This version is not peer-reviewed.

Efficiencies of Feature Engineering in the Machine Learning approach for Fake News Classification

Submitted:

31 October 2021

Posted:

01 November 2021

You are already at the latest version

Abstract
The rapid infiltration of fake news is a flaw to the otherwise valuable internet, a virtually global network that allows for the simultaneous exchange of information. While a common, and normally effective, approach to such classification tasks is designing a deep learning-based model, the subjectivity behind the writing and production of misleading news invalidates this technique. Deep learning models are unexplainable in nature, making the contextualization of results impossible because it lacks explicit features used in traditional machine learning. This paper emphasizes the need for feature engineering to effectively address this problem: containing the spread of fake news at the source, not after it has become globally prevalent. Insights from extracted features were used to manipulate the text, which was then tested on deep learning models. The original unknown yet substantial impact that the original features had on deep learning models was successfully depicted in this study.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated