Preprint
Article

This version is not peer-reviewed.

Closed Form Solution of Plane-Parallel Turbulent Flow Along an Unbounded Plane Surface

Submitted:

05 January 2022

Posted:

06 January 2022

Read the latest preprint version here

Abstract
In this paper, a century-old problem is solved; namely, to find a unified analytic description of the non-uniform distribution of mean velocity across the entire domain of turbulent flow for all Reynolds numbers within the framework of the Prandtl mixing length theory. This study obtains a closed form solution of the mean velocity profile of plane turbulent flow for the Prandtl theory, and as well an approximate analytical solution for the van Driest mixing length theory. The profiles of several useful quantities are given based the closed form solution, such as turbulent viscosity, Reynolds turbulent stress, Kolmogorov's scaling law, and energy dissipation density. The investigation shows that the energy dissipation density at the surface is finite, whereas Landau's energy dissipation density is infinite. Strictly speaking, the closed form solution reveals that the universality of the turbulent velocity logarithmic profile no longer holds, but the von K\'arm\'an constant is still universal. Furthermore, a new formulation of the resistance coefficient of turbulent flow in pipes is formulated in implicit form.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated