Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

M-Center in Neutron Irradiated 4H-SiC

Version 1 : Received: 25 October 2021 / Approved: 27 October 2021 / Online: 27 October 2021 (18:23:02 CEST)

A peer-reviewed article of this Preprint also exists.

Capan, I.; Brodar, T.; Makino, T.; Radulovic, V.; Snoj, L. M-Center in Neutron-Irradiated 4H-SiC. Crystals 2021, 11, 1404. Capan, I.; Brodar, T.; Makino, T.; Radulovic, V.; Snoj, L. M-Center in Neutron-Irradiated 4H-SiC. Crystals 2021, 11, 1404.

Abstract

We report on metastable defects introduced in n-type 4H-SiC material by epithermal and fast neutron irradiation. The epithermal and fast neutron irradiation defects in 4H-SiC are much less explored compared to electron or proton irradiation induced defects. In addition to silicon vacancy (Vsi) and carbon antisite-carbon vacancy (CAV) complex, the neutron irradiation has introduced four deep level defects, all arising from the metastable defect, the M-center. The metastable deep level defects were investigated by deep level transient spectroscopy (DLTS), high-resolution Laplace DLTS (L-DLTS) and isothermal DLTS. The existence of the fourth deep level M4, recently observed in ion implanted 4H-SiC, has been additionally confirmed in neutron irradiated samples. The isothermal DLTS technique has been proven as a useful tool for studying the metastable defects.

Keywords

defects; 4H-SiC; DLTS; neutrons

Subject

Physical Sciences, Condensed Matter Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.