Preprint
Article

Comparison of CNNs and ViTs Based Hybrid Models Using Gradient Profile Loss for Classification of Oil Spills in SAR Images

This version is not peer-reviewed.

Submitted:

23 October 2021

Posted:

25 October 2021

You are already at the latest version

Abstract
Oil spillage over a sea or ocean’s surface is a threat to marine and coastal ecosystems. Spaceborne synthetic aperture radar (SAR) data has been used efficiently for the detection of oil spills due to its operational capability in all-day all-weather conditions. The problem is often modeled as a semantic segmentation task. The images need to be segmented into multiple regions of interest such as sea surface, oil spill, look-alikes, ships and land. Training of a classifier for this task is particularly challenging since there is an inherent class imbalance. In this work, we train a convolutional neural network (CNN) with multiple feature extractors for pixel-wise classification; and introduce to use a new loss function, namely ‘gradient profile’ (GP) loss, which is in fact the constituent of the more generic Spatial Profile loss proposed for image translation problems. For the purpose of training, testing and performance evaluation, we use a publicly available dataset with selected oil spill events verified by the European Maritime Safety Agency (EMSA). The results obtained show that the proposed CNN trained with a combination of GP, Jaccard and focal loss functions can detect oil spills with an intersection over union (IoU) value of 63.95%. The IoU value for sea surface, look-alikes, ships and land class is 96.00%, 60.87%, 74.61% and 96.80%, respectively. The mean intersection over union (mIoU) value for all the classes is 78.45%, which accounts for a 13% improvement over the state of the art for this dataset. Moreover, we provide extensive ablation on different Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) based hybrid models to demonstrate the effectiveness of adding GP loss as an additional loss function for training. Results show that GP loss significantly improves the mIoU and F1 scores for CNNs as well as ViTs based hybrid models. GP loss turns out to be a promising loss function in the context of deep learning with SAR images.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

323

Views

239

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated