Preprint
Review

This version is not peer-reviewed.

Factorization in Molecular Modeling and Belief Propagation Algorithms

Pu Tian  *

Submitted:

07 October 2021

Posted:

07 October 2021

You are already at the latest version

Abstract
Factorization reduces computational complexity and is therefore an important tool in statistical machine learning of high dimensional systems. Conventional molecular modeling, including molecular dynamics and Monte Carlo simulations of molecular systems, is a large research field based on approximate factorization of molecular interactions. Recently, the local distribution theory was proposed to factorize global joint distribution of a given molecular system into trainable local distributions. Belief propagation algorithms are a family of exact factorization algorithms for trees and are extended to approximate loopy belief propagation algorithms for graphs with loops. Despite the fact that factorization of probability distribution is their common foundation, computational research in molecular systems and machine learning studies utilizing belief propagation algorithms have been carried out independently with respective track of algorithm development. The connection and differences among these factorization algorithms are briefly presented in this perspective, with the hope to intrigue further development in factorization algorithms for physical modeling of complex molecular systems.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated