Submitted:

30 September 2021

Posted:

30 September 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
In this article, we show theoretically and experimentally the formation of spin-waves band gaps in a magnonic crystal that was implemented by the deposition of periodic micro-structured strips of magnetite nanoparticles. A theoretical model describing the spectra of the transmitted spin-waves bandgaps is proposed. This is achieved using a simple model based on microwave transmission line theory and considering the presence of micro-structured strips of magnetite nanoparticles on the surface. Such magnonic crystal of equally spaced micro-structured strips of magnetite nanoparticles on the surface of an yttrium iron garnet thin film has been implemented and measured. The periodic micro-structured nanoparticles are deposited on the surface of such yttrium iron garnet single-crystal film grown on a gallium-gadolinium garnet substrate via dip-coating technique. Propagation of magnetostatic surface spin-waves is studied and it is shown that the presence of such periodic structure leads to the formation of spin-wave band gaps in the transmission characteristics. The spin-wave detection has been carried out using a pair of microwave antennas and a vector network analyzer. The results show that the periodic structure formed by the magnetite strips modifies the spectra of the transmitted spin waves producing band gaps.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

181

Views

206

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated