Preprint
Article

The Spacetime and Finite-Size Nuclear Structure of The Black Hole

This version is not peer-reviewed.

Submitted:

18 September 2021

Posted:

21 September 2021

Read the latest preprint version here

Abstract
The Schwarzschild metric describes a non-rotating and charge-free celestial body, and it results in things stopping at the event horizon of a black hole and spending infinite time across the event horizon by the observer far away from the black hole. The analysis of the particle’s behavior at the event horizon tells us that this solution predicts an un-expanded black hole which violates the astronomical observations and our knowledge about the black hole. Although some alternative metrics have been proposed, the singularity problem is still unsolved. In this research, the degenerate Fermi electron gas is used to reveal that the Fermi electron gas cannot shrink to a point no matter how large energy it obtains, so the singularity exists at the center very unreasonably. In order to avoid these problems, a finite-size nucleus of the black hole is proposed and reasonably explained by the behaviors of the Fermi electron gas and the Fermi neutron gas there. On the other hand, the Kerr-Newman metric is the one describing the rotating and charged black hole and the equation of the light velocity at each space point can be obtained. It tells us that there are two real and non-imaginary solutions for the radial speed of light at the position larger than the Schwarzschild radius.
Keywords: 
black hole; Schwarzschild radius; Kerr-Newman metric; finite-size nucleus
Subject: 
Physical Sciences  -   Astronomy and Astrophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

207

Views

213

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated