Preprint
Article

This version is not peer-reviewed.

Application of Explainable AI (Xai) For Anomaly Detection and Prognostic of Gas Turbines with Uncertainty Quantification.

Submitted:

01 September 2021

Posted:

02 September 2021

Read the latest preprint version here

Abstract
XAI is presently in its early assimilation phase in Prognostic and Health Management (PHM) domain. However, the handful of PHM-XAI articles suffer from various deficiencies, amongst others, lack of uncertainty quantification and explanation evaluation metric. This paper proposes an anomaly detection and prognostic of gas turbines using Bayesian deep learning (DL) model with SHapley Additive exPlanations (SHAP). SHAP was not only applied to explain both tasks, but also to improve the prognostic performance, the latter trait being left undocumented in the previous PHM-XAI works. Uncertainty measure serves to broaden explanation scope and was also exploited as anomaly indicator. Real gas turbine data was tested for the anomaly detection task while NASA CMAPSS turbofan datasets were used for prognostic. The generated explanation was evaluated using two metrics: Local Accuracy and Consistency. All anomalies were successfully detected thanks to the uncertainty indicator. Meanwhile, the turbofan prognostic results show up to 9% improvement in RMSE and 43% enhancement in early prognostic due to SHAP, making it comparable to the best published methods in the problem. XAI and uncertainty quantification offer a comprehensive explanation package, assisting decision making. Additionally, SHAP ability in boosting PHM performance solidifies its worth in AI-based reliability research.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated