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Abstract: XAI is presently in its early assimilation phase in Prognostic and Health Management 
(PHM) domain. However, the handful of PHM-XAI articles suffer from various deficiencies, 
amongst others, lack of uncertainty quantification and explanation evaluation metric. This paper 
proposes an anomaly detection and prognostic of gas turbines using Bayesian deep learning (DL) 
model with SHapley Additive exPlanations (SHAP). SHAP was not only applied to explain both 
tasks, but also to improve the prognostic performance, the latter trait being left undocumented in 
the previous PHM-XAI works. Uncertainty measure serves to broaden explanation scope and was 
also exploited as anomaly indicator. Real gas turbine data was tested for the anomaly detection task 
while NASA CMAPSS turbofan datasets were used for prognostic. The generated explanation was 
evaluated using two metrics: Local Accuracy and Consistency. All anomalies were successfully de-
tected thanks to the uncertainty indicator. Meanwhile, the turbofan prognostic results show up to 
9% improvement in RMSE and 43% enhancement in early prognostic due to SHAP, making it com-
parable to the best published methods in the problem. XAI and uncertainty quantification offer a 
comprehensive explanation package, assisting decision making. Additionally, SHAP ability in 
boosting PHM performance solidifies its worth in AI-based reliability research.                 
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1. Introduction 
AI is a marvel of today’s technological advancement. It marks the culmination of 

decades-long effort by the technical community in imitating biological reasoning. The ex-
pansion of data volume, the availability of open source development tools, the easing of 
collaboration between AI players and the countless unexplored opportunities push AI on 
a global scale. Backed by a steady flow of investment and enjoying supports from tech-
friendly authorities, AI-based projects flourish, replacing the old ways of doing things. AI 
brings optimization, automation, and efficiency to the table.       

Nowadays, AI powered applications are practically everywhere, whether it is appar-
ent or hidden. AI penetration is not limited to social media, where it is probably more 
visible to the general public, but it reaches far into niche areas. Much progress has been 
felt especially in fields such as healthcare [1], defense [2], manufacturing [3], biology [4] 
robotics [5] and reliability [6] in the recent years.  

Tech firms and external funders define the AI investment landscape at the moment, 
with machine learning startups being one of the most funded sectors since 2011 [7]. Ap-
proximately 30% augmentation in AI investment was registered from the 2010 to 2013 and 
40% from the 2013 to 2016 [8]. To give an idea of the scale this represents, around $26 to 
$39 billion were invested in 2016.   

Price Water Cooper (PwC) projects an equivalent of $15.7 trillion or 14% of added 
GDP value by the 2030 fueled by the growth in productivity and consumer demand due 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2021                   doi:10.20944/preprints202109.0034.v1

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202109.0034.v1
http://creativecommons.org/licenses/by/4.0/


 

to AI [9]. McKinsey, on the other hand, estimates an annual increase of 1.2% in global 
GDP, or $13 trillion by the 2030, driven by AI substitution of workforce and AI-driven 
industrial innovation [10].  

1.1. Black Box Obstacle 
However, the most commonly used and the most powerful AI methods are black box 

in nature. DL, for example, is opaque. In other word, the reason an output is produced by 
the model is unknown. Naturally, this presents an obstacle, a risk, in AI assimilation in 
elevated performance, high stake markets. Decision making in these areas depends much 
on supportive evidence, and not merely point-estimate prediction. Wrong forecast by AI 
models could prove disastrous in term of life, health, time, or financially. 

Regulation bodies see red in this opacity and started introducing laws to protect user. 
The General Data Protection Regulation (GDPR) in the European Union (EU) went into 
effect in 2018 [11]. GDPR is a comprehensive set of regulations governing algorithmic re-
sponsibility, requiring openness, procedure, and supervision when computers are used to 
make major decision concerning human being. The year after, the Ethics Guidelines for 
Trustworthy Artificial Intelligence presented by the European Commission High-Level 
Expert Group on AI was published [12]. It suggests some key requirements to make AI 
trustworthy.  

These laws and guidelines echo the same idea: AI transparency.   

1.2. Explainable AI (XAI) 
XAI is a discipline dedicated in making AI model discoverable and more transparent. 

While the term has existed early on, it recently picked up steam as a result of rising scru-
tiny in AI usage [13]. The accumulation of publications and the surge in interest expressed 
for the search term Explainable AI since 2016, shown here in Figure 1, reflect the growing 
interest in the field [14]. In 2017, DARPA launched the "Explainable AI (XAI) initiative", 
while the Chinese government published "The Development Plan for New Generation of 
Artificial Intelligence" in the same year, both aiming to proliferate XAI [13]. 

The need for XAI transcends regulations. XAI could prove to be rewarding than bur-
densome to AI community. Some of the incentives in incorporating XAI are as follows: 

1. Justify decision, detect problem, and improve AI models.  
2. Comply with the regulations, bias, ethics, reliability, accountability, safety, and 

security of AI use. 
3. Enabling user to verify model's desirable properties, encouraging interactivity, 

gaining new insights on the model or the data and augment human intuition.  
4. Allow user’s task, effort, and resources to be more optimized and targeted. 
5. Important when the cost of error is high or when the AI system is not yet proven 

to be reliable.  
6. Foster the collaboration between experts, data scientists, users, and stakeholders. 
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Figure 1. Interest shown for 'Explainable AI' term in Google search. 

1.3. The State XAI in PHM 
PHM is a maintenance and asset management strategy that exploits signals, meas-

urements, models, and algorithms to anticipate, analyze, and track health deterioration in 
industrial assets. [15]. PHM provides standards and protocols to ensure that assets are in 
good working order. It reduces hazards, maintenance costs, and workload, allowing 
maintenance operations to be optimized.   

Failure prognostic, diagnostic, and anomaly detection are the three categories of 
PHM activities. Prognostic is the process of determining asset's Remaining Useful Life 
(RUL) or leftover operating time before breakdown. Anomaly detection is the action of 
identifying unusual patterns going against the norm of operational indicators whereas 
diagnostic is the action of classifying failure and discovering the detailed root cause of 
failure. AI-based methods occupy a key position in PHM research as shown in [6]. XAI, 
on the other hand, is somewhat a novelty in PHM.  

A systematic review conducted by the author in [16] summarizes the current state of 
XAI in PHM: 

1. XAI assimilation in PHM is still in its early years. Nevertheless, it is gaining in-
terest, with a spike in published works in 2020.  

2. Interpretable model, rule & knowledge-based model as well as attention mech-
anism are the most commonly used XAI approach in PHM at the moment, as 
presented in Figure 2. 

3. XAI is fast becoming vital to PHM, as it can be adapted as a tool to execute PHM 
tasks, as seen in the majority of diagnostic and anomaly detection works. 

4. PHM performance is unaltered by XAI. 
5. Identified gaps in PHM-XAI research comprises of lack in human participation, 

explainability metrics and uncertainty management.  
6. Mostly real, industrial case studies were tested in previous works to demonstrate 

the effectiveness of XAI in PHM domain.  
 

 
Figure 2. XAI approach in PHM works. 

1.4. Related Works 
This section elaborates some of the former PHM-XAI articles available. In presenta-

tion order: Interpretable model [17], tree-based [18], knowledge & rule-based [19], Logic 
Analysis of Data (LAD) [20], feature extraction-based [21], filter-based [22], cluster-based 
[23], attention-based [24], model-agnostic explainability [25] and Layer-Wise Relevance 
Propagation (LRP) [26]. 
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An interpretable logistic regression model with elastic net regularization is employed 
in high pressure plunger pump anomaly detection in [17]. Data is first equally divided, 
and statistic measures are calculated on each division. A rolling window operation is then 
applied on the extracted features where flag is associated indicating if a failure will occur 
or not based on the statistical measure calculated before. The flagged representations, hav-
ing the most relevant features associated with failure, serve as input to the regularized 
logistic regression. The relevance order of features to be included from the flagged repre-
sentations is determined by considering the normal/failure feature distributions and 
measuring their Kolmogorov–Smirnov distance. 

A graphical diagnosis technique based on Convolutional Neural network (CNN) and 
extreme gradient boosting (XGBoost), applied on gas turbine failure problem is presented 
in [18]. It replaces portions of the CNN architecture with XG-boost, a machine learning 
approach for classification and regression, and makes the CNN training model interpret-
able. XGBoost is a boosting method that combines several weak classifiers into a single 
strong classifier. The Classification and Regression Tree (CART) is the weak classifier uti-
lized by XGBoost. CART is a binary tree that splits by looking for the best segmentation 
feature and cut point using the GINI coefficient as a criterion. The time series data are fed 
into the CNN. When comparable signals are clustered together, the local features will im-
prove, allowing CNN to be more accurate. These signals may be sorted with XGBoost, 
improving feature order interpretability. To determine the accuracy, the original raw data 
obtained from the gas turbine is first fed into the CNN. The signal rankings from the initial 
raw data, as well as the accuracy gained by CNN, are then trained in XGBoost to produce 
tree models that can choose the optimal features-accuracy sorting combinations. 

A K-margin-based intErpretable lEarNing (KEEN) is presented in [19] for interpret-
able aircraft structural damage diagnosis. This framework consists of a Residual Convo-
lution Recurrent Neural Network (RCR-Net), a K-margin diagnostic method and a 
knowledge-directed interpretation approach. RCR-Net is a deep learning model that can 
automatically obtain features and deal with class skewness issues. As input, it accepts 
augmented data segments. After that, it divides the augmented segments into small frag-
ments and outputs the segment's health-condition prognosis. The K-margin based diag-
nosis model is robust against noise. It focuses on the RCR-Net's most relevant segments 
automatically. Its health-condition detector uses segments with top-K confident to esti-
mate the health status. Simultaneously, a knowledge-based interpretation approach auto-
matically extracts features from the RCR-Net responsible for the fault. 

A process diagnostic-explanation structure consisting of knowledge discovery in da-
tabase (KDD) method and Failure Tree Analysis (FTA) is proposed in [20]. The KDD 
method, in specific LAD, extracts patterns from the process dataset and produces rule-
based explanation describing the root cause of failure. This explanation is later translated 
into FTA logic reasoning. The ability of this method is demonstrated in an actuator system 
failure diagnosis. 

The Spectrum Anomaly Detector with Interpretable Feature (SAIFE) is an Adversar-
ial Autoencoders (AAE) based model applied on the problem of wireless spectrum anom-
aly detection [21]. LSTM acts as the encoder for extracting interpretable features such as 
signal bandwidth, class, and center frequency via a linear layer and classifying signal via 
a Softmax layer. A CNN acts as decoder for reconstructing the input data from the ex-
tracted features. The AAE architecture is trained in a semi-supervised fashion for learning 
interpretable features, while the reconstruction is fully unsupervised. The model learns 
the features during the semi-supervised training with partial data. During testing, anom-
aly is detected based on the reconstruction error, classification error and the loss from the 
discriminator which is part of AAE generator-discriminator adversarial architecture, 
Anomaly localization is achieved by plotting the absolute reconstruction error. 

TScatNet is proposed in [22] for bearing and drive train failure diagnosis. TScatNet 
collects domain-invariant features utilizing Morlet wavelet and uses these features for di-
agnosis purpose. TScatNet consists of a time-scattering (Scat) module of standard CNN 
having Morlet wavelets as convolutional filters and a Softmax module comprising of 
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global averaging pooling (GAP) and Softmax layer. The Scat module transforms the input 
into scattering features maps. At testing phase, these maps are passed to the global aver-
aging pooling (GAP) layer. The GAP layer aids in the simplification of testing processes 
and improves the stability of the derived scattering characteristic. The Softmax layer maps 
each scattering feature into the probability value of fault categories. 

Emission control system fault diagnosis method based on PCA clustering is pre-
sented in [23]. The sensor data is firstly treated with PCA for dimensionality reduction. 
This sensor data is mapped to relative air/fuel ratio target, which represents normal or 
degraded operation. The result of the PCA then undergo PCA-based clustering (Vector-
ized PCA-VPCA, Multilinear Principal Component Analysis-MPCA or Uncorrelated Mul-
tilinear PCA-UMPCA clustering). The PCA-based clusters isolate fault events in a re-
stricted number of clusters (scenarios), each one described by a reference pattern. Once 
the data have been partitioned into clusters (scenarios), practitioners analyze cluster pat-
terns to get more insight for fault diagnosis. This provides practitioners with an efficient 
and interpretable model of multichannel profile data in high-dimensional spaces to sup-
port the diagnosis and finding root cause. 

Classification of Linear Motion guide fault based on CNN applied to vibration signal 
and explainability with frequency domain-based Grad-CAM (FG-CAM) are proposed to 
analyze frequencies that have a significant impact on fault conditions [24]. 

A feed forward neural network (FFNN) together with SHAP (global) and LIME (lo-
cal) are employed to predict and explain the damage of prismatic cantilever steel beam in 
[25]. The frequencies and associated damage percentage ranging from 0% to 75% are used 
as input features and the distance, corresponding to 194 positions of damage are used as 
target of the FFNN. 

Diagnosis of induction motor fault using CNN and LRP is proposed in [26]. The vi-
bration time series data segments used as input are transformed into time-frequency im-
age using Continuous Wavelet Transform (CWT) with Morlet wavelet which is then pro-
cessed by CNN for classification. LRP captures pixel-level representation of features con-
tributing to the failure. 

1.5. Research Objectives and Contributions 
This work firstly elaborates how data uncertainty can be exploited as anomaly indi-

cator in anomaly detection task. Then it details a prognostic improvement method using 
SHAP global explanation. Both task’s predictions were explained by SHAP. Additionally, 
the uncertainty also serves to strengthen the explanation by broadening its scope. Local 
Accuracy and Consistency metrics were used to assess the explanation. Real world data 
from a gas turbine and NASA CMAPPS turbofan datasets were respectively used for 
demonstrating the anomaly detection and prognostic capabilities.  

The direct contributions of this work are four folds:  
1. Firstly, the uncertainty, together with XAI form a broader explanation scope, 

which bridge the gap identified in 1.3.  
2. Secondly, the SHAP ability to improve PHM task, which was absent from previ-

ous works as explained in [16]. 
3. Thirdly, the application of explanation metrics which was nearly missing from 

former works as indicated in 1.3.  
4. Finally, this paper reveals the practicality of deep learning uncertainty as anom-

aly indicator using real world dataset. 

The supplementary contributions of this work are two folds: 
1. This work adds to AI-based PHM articles employing model agnostic approaches 

which is insufficiently explored as testified in Figure 2. 
2. By verifying the local accuracy and consistency propriety of SHAP explanation, 

this work also verifies the Efficiency, Symmetry, Dummy and Additivity proprieties 
of Shapley values.   
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100% of the anomalous data were successfully detected thanks to the uncertainty-based 
indicator. Additionally, the prognostic performance improved around 6% to 9% as well 
as 43% improvement in early prognostic thanks to SHAP global explanation.  

2. Materials and Methods 
2.1. Uncertainties in Deep Learning 

Uncertainty in DL linked to the quality of input data is known as Aleatoric uncer-
tainty (AU). This uncertainty may happen due to noise, data acquisition error or stochas-
ticity captured in the input data, which is the usual situation encountered in the real 
world. This type of uncertainty cannot be reduced further by having more data if no im-
provement was done on the data acquisition technique. Uncertainty linked to the chosen 
parameter (weights) of DL model is called epistemic uncertainty (EU) [27,28,29,30]. 

2.2. Multi-Outputs Bayesian LSTM 
To enable the quantification of both uncertainties and generate explanation, a single 

input, multi outputs probabilistic LSTM was developed. The model consists of an input 
layer, then an LSTM layer, followed by a fully connected layer. The proceeding layers are 
the output layers. The first output layer is the AU layer, generating sequential outputs 
with data uncertainty. The second output layer is the EU layer, also producing sequential 
outputs with parameter uncertainty. The last output layer produces the prediction to be 
explained. In this layer, the outputs from the LSTM are sliced to obtain only the first value 
of each sequence which are then grouped in a single explanation vector. For a simplified 
schematic of the whole model, refer to Structure 1 in Figure 3. 

For anomaly detection, the model was fed with only healthy data while for prognos-
tic, both healthy and failure inputs were involved.  

 

Figure 3. Different LSTM structures used in this work. 

2.2.1. Probabilistic Layers 
The AU layer is a probabilistic layer that learns and predicts the mean and variable 

standard deviation from the input coming from the LSTM layer to form the prediction 
range, translated into uncertainty distribution [31]. Thus, every point in an RUL sequence 
consists of a distribution of RUL prediction. In this work, normal distribution was used to 
model the uncertainty as it is easily understood. 
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The EU layer, called the Dense Variational Layer learns and predicts the weights dis-
tributions or the posterior distribution of the weights using variational inference by max-
imizing the ELBO (Evidence Lower BOund) objective, ℒ [32].  

ℒ(𝑞 )  =  −𝔼 ( )  −𝑙𝑜𝑔 𝑃 (𝑦|𝑋, 𝑤)  −  𝑙𝑜𝑔
𝑃(𝑤)

𝑞 (𝑤)
  

(1)

 

ℒ(𝑞 )  =  − 𝑑𝑤𝑞 (𝑤)𝑙𝑜𝑔 𝑃 (𝑦|𝑋, 𝑤)  + 𝑑𝑤𝑞 (𝑤)𝑙𝑜𝑔
𝑞 (𝑤)

𝑃(𝑤)
  

(2)

 
 

With 𝑃(𝑤)  the prior, the approximation distribution 𝑞 (𝑤) 𝑎𝑛𝑑  𝑃(𝑦|𝑋, 𝑤), the likeli-
hood function relating all inputs 𝑋, all labels 𝑦 and the weights 𝑤. The weights distribu-
tion can then be sampled to produce the output for a given input.  

2.2.2. Bayesian Hyperparameter Optimization (BayesOpt) 
The hyperparameters for the model were obtained via Bayesian hyperparameter op-

timization (BayesOpt) [33]. Optimized hyperparameters help in reducing the EU. The ex-
plored hyperparameters and its search space are shown in Table 1.  

Table 1. BayesOpt Hyperparameters Search Space. 

Parameters 
Hidden 

Units 
Fully Connected  

Layer Size 
Mini Batch 

Size 
Learning 

Rate 

Space 10 to 1000 10 to 500 26 to 130 
5e-4 to 

1e-3 
 

2.3. Data Denoising & Uncetainty Visualization 
Since noise could worsen the AU, data denoising was performed by applying Singu-

lar Value Decomposition (SVD) following the method shown in [34][35]. 
The rolling standard deviation of the prediction distributions characterizes the un-

certainty. Increasing trend in standard deviation signifies a decreasing confidence in 
model’s prediction and vice versa.  

2.4. CUSUM Changepoint Detection for Anomaly Detection 
The uncertainty mirrors the model’s confidence in predicting. Since the model was 

trained with only healthy data, the AU is expected to show a spike once anomalous input 
is tested, signaling that the distribution of data in question was not previously learned 
during the training phase. CUSUM changepoint detection was applied to identify the 
anomaly spikes with the appropriate control limit [36].   

 Given a sequence 𝑥 , 𝑥 , 𝑥 , … , 𝑥  with mean 𝑚  and standard deviation 𝜎 , the 
upper 𝑈  and lower 𝐿  cumulative process sums are: 

𝑈 =  
0,

𝑚𝑎𝑥 0, 𝑈 +  𝑥  −  𝑚 −  
1

2
𝑛𝜎

𝑖 = 1

𝑖 >  1
 (3)

 

𝐿 =  
0,

𝑚𝑖𝑛 0, 𝐿 +  𝑥  − 𝑚 +  
1

2
𝑛𝜎

𝑖 =  1

𝑖 >  1
 (4)
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A process deviates at the sample 𝑥  if it obeys  𝑈𝑗  >  𝑐𝜎𝑥 or 𝐿  <  −𝑐𝜎  with 𝑐  the 
control limit.  

The predetermined control limit, 𝑐  is defined using healthy data prediction AU. 
Given 𝜎  the standard deviation of the AU. 𝜎  is the maximum and 𝜎  is the 
mean of the standard deviations of the AU, 𝜎  is the standard deviation of the stand-
ard deviations of the AU, 𝑐 can be calculated as: 

𝑐 =  
𝜎  −  𝜎

𝜎
 (5)

2.5. SHapley Additive exPlanations 
SHAP is a game theoretic approach to explain the output of any machine learning 

model [37]. It evaluates the contribution of each feature to the prediction by using Shapley 
values. SHAP can be both global and local explainability approach. Shapley values deter-
mine the importance of a single feature by considering the outcome of each possible com-
bination of features. In other word, the Shapley value is the average expected marginal 
contribution of a feature across all possible combination of features. 

𝑔(𝑧 )  =  𝜙  +  𝜙 𝑧

  

 (6)

 

Given 𝑔 the explanation model. 𝑧 ∈ {0,1}  are the simplified features that describe 
the presence of interested feature in the feature’s combination with 𝑧  =  0 means the 
interested feature are absent in the combination and 𝑧  =  1 signifying the feature are 
present. 𝑀 is the maximum coalition size and 𝜙 ∈ 𝑅 is the Shapley values for a feature 
𝑗. The formula for Shapley value is:  

𝜙 (𝑣𝑎𝑙) =
|𝑆|! (𝑝 − |𝑆| − 1)!

𝑝!
⊆ ,..., \

 (𝑣𝑎𝑙(𝑆 ∪  𝑥 )  −  𝑣𝑎𝑙(𝑆)) (7)

 

𝑆 is a subset of the features used in the model, 𝑥 is the vector of feature values of the 
instance to be explained and 𝑝 is the number of features. 𝑣𝑎𝑙 (𝑆)  is the prediction for 
feature values in set 𝑆 that are marginalized over features that are not included in set 𝑆. 
𝐸 (𝑓(𝑋)) is the average predicted value.  

𝑣𝑎𝑙 (𝑆)  =  𝑓(𝑥 , . . . , 𝑥 )𝑑ℙ ∉  −  𝐸 (𝑓(𝑋)) (8)

 
However, SHAP only accepts non probabilistic model. Thus, for generating explana-

tion, another LSTM model was used, whose structure and weights resemble the input and 
the third output layers of the original model as depicted in Structure 2 in Figure 3.  

SHAP force plot and waterfall plot, were used to explain the instance prediction 
while SHAP summary plot, a global visualization, explains by identifying the most con-
tributing features in a sequence. In force plot, each feature value is represented as a posi-
tive or negative force pushing or dragging the prediction while in waterfall plot, the fea-
tures contribution, and its force, linking the instance prediction and the average prediction 
are depicted. In summary plot, features are ordered according its absolute Shapley value. 
Those with important values occupy the top positions than less important features. The 
force plot was used to explain anomaly instances while the summary plot was exploited 
to explain and improve the prognostic performance. The waterfall plot, on the other hand, 
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was employed to verify the consistency nature of the explanation as described later in 
Section 2.7.2.    

2.6. Performance Evaluation 
2.6.1. Model Predictive Performance 

The average RMSE for 100 predictions was calculated between the predicted RUL 
(mean of RUL distribution) and the ground truth RUL [38,39]. 

𝑅𝑀𝑆𝐸 =  

1
𝑀

∑ (𝑅𝑈𝐿
( )

− 𝑀𝑒𝑎𝑛
( )

)

100 
(9)

 

With 𝑅𝑈𝐿
( )  as the ground truth RUL for gas turbine i, 𝑀𝑒𝑎𝑛

( )  as the predicted RUL 
for gas turbine 𝑖 and 𝑀 as the total number of gas turbine. 

2.6.2. Early Prediction Score 
This metric was only applied in prognostic task. The scoring function, 𝑠, gives higher 

score for the same error in early prediction than late prediction. It penalizes late prediction 
than the early ones as the latter is more important that the former in any failure related 
forecasting problem [40,41]. The average score for 100 predictions was calculated.  

𝑠 =
( 𝑀 ∑ 𝑠 )

100 (10)

𝑠 =  
𝑒  − 1, 𝑑 < 0 

𝑒 − 1, 𝑑 > 0
 (11)

𝑑𝑖 = 𝑀𝑒𝑎𝑛
( )

 −  𝑅𝑈𝐿  (12)

2.7. Explanation Metrics 
This subsection introduces the metrics for evaluating SHAP explanation [42].  

2.7.1. Local Accuracy 
This propriety states that the feature contributions must add up to the difference of 

prediction for x and the average. Starting from a normal SHAP notation:  

𝑓(𝑥) =  𝛷  +  𝛷 𝑥

  

 (13)

By posing 𝛷  =  𝛦 (𝑓̂̂(𝑋 )) and setting 𝑥 = 1, the Shapley Value efficiency propriety is 
found.  

𝑓(𝑥) =  𝛷  +  𝛷 𝑥

  

 =  𝛦 (𝑓̂̂(𝑋 ))  +  𝛷

  

 (14)

  𝛷

  

 =  𝑓(𝑥) −  𝛦 (𝑓̂(̂𝑋 )) (15)

Where 𝑓(𝑥) is the prediction for x and 𝛦 (𝑓̂(̂𝑋 )) is the average prediction.  

2.7.2. Consistency 
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This propriety states that if a model changes so that the marginal contribution of a 
feature value increases or stays, the Shapley value also increases or stays the same. With 
𝑧 \  ⇔  𝑧  = 0. For any two models 𝑓 and 𝑓 , if:  

𝑓 (𝑧 )  −  𝑓 (𝑧 \ )  ≥ 𝑓 (𝑧 )  −  𝑓 (𝑧 \ )  (16)

for 𝑧 ∈  {0, 1} , then: 

𝛷 (𝑓 , 𝑥)  ≥  𝛷 (𝑓, 𝑥) (17)

𝑓 (𝑧 )  is the model with Structure 2 in Figure 3 while 𝑓 (𝑧 )  is the same model but 
with different weights. 𝑓 (𝑧 \ ) and 𝑓 (𝑧 \ ) are then the models with Structure 3 in Fig-
ure 3, having the same weights as 𝑓 (𝑧 ) and 𝑓 (𝑧 ) respectively, except for the input of 
interest.   

To examine this propriety, the output of 𝑓 (𝑧 ), 𝑓 (𝑧 \ ), 𝑓 (𝑧 ), 𝑓 (𝑧 \ ) 𝛷 (𝑓, 𝑥) and 

𝛷 (𝑓 , 𝑥) were extracted from the waterfall plot. Eq. (16) can then be calculated to verify 
Eq. (17). 

By validating this metric, the explanation also conforms to the Symmetry, Dummy and 
Additivity natures of Shapley values. 

3. Results 

3.1. Case Study 1: Anomaly Detection on Real Gas Turbine Data 
A one year worth of data coming from a twin-shaft 18.8 MW industrial gas turbine 

was exploited. This equipment had been previously studied in [43]. The data consists pre-
dominantly of healthy data with some anomalies producing null (zero) and NaN sensor 
measurement. It comprises of 98 features ranging from temperature, pressure, speed, and 
position, totaling 8737 hours of recorded measurement. However, as stated in [43], only 
several variables are useful for the DL model. The inputs-outputs are shown in Table 2. 
All the inputs were used to predict each of the output as depicted in Figure 5 by four 
models denoted as 𝐿𝑆𝑇𝑀 , 𝐿𝑆𝑇𝑀 , 𝐿𝑆𝑇𝑀  and 𝐿𝑆𝑇𝑀  

Figure 4 depicts a schematic diagram of the gas turbine under consideration.  

 

Figure 4. 18.8 MW gas turbine schematic. 
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Table 2. Real gas turbine variables. 

 

 
Figure 5. Real gas turbine inputs and outputs modelling. 

3.1.1. Data Preparation 
Anomalous data in the order of 377 hours was firstly removed from the dataset. The 

rest of the data was divided into training and testing datasets. A sequence of data was set 
to 24 hours. Thus, the models were fed with 24 hours input and output the same length of 
prediction. Hourly data from 01/01/18 to 26/11/18 amounting to 7488 hours or 312 se-
quences were used for training and validation. The data from 26/11/18 to 31/12/18 amount-
ing to 816 hours or 34 sequences were reserved for healthy state testing purpose.  

The anomalous hours were combined with the healthy data corresponding to the pe-
riod before and after the anomaly to make up a sequence of 24 hours. The null anomaly, 
on the 8th April to 9th April at 11pm to 12am (6th to 7th instances) were considered. 

The summary of the datasets is presented in Table 3. 

Table 3. Real gas turbine datasets. 

Dataset Training & Validation Testing Null Anomaly 

Date & Sequence of 
Interest 

1st Jan to 26th Nov 2018 26th Nov to 31st Dec 2018 
8th April to 9th April 2018 

11pm to 12am 
6th to 7th instances 

Total Hours 7488 816 24 
Total Sequence 312 34 1 

3.1.1. Healthy Data Modelling Performance 
The average RMSE results for healthy testing data are presented in Table 4. [43] how-

ever do not specify any numeral results for the performance, thus no comparison can be 
done 

 

Ref Input Unit Ref Output Unit 

𝑃  Compressor inlet pressure Bar 𝑃  Compressor outlet pressure Bar 
𝑇  Compressor inlet temperature K 𝑃  Gas generator turbine outlet pressure Bar 
𝑁  Power turbine rotational speed RPM 𝑇  Gas generator turbine outlet temperature K 
𝓂𝒻  Fuel mass flow rate kg/s 𝑁  Gas generator rotational speed RPM 
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Table 4. Average RMSE for 100 evaluations with AU and UE. 

Model RMSE with AU RMSE with EU 
𝐿𝑆𝑇𝑀  387.73 387.90 
𝐿𝑆𝑇𝑀  22.98 36.54 
𝐿𝑆𝑇𝑀  12.79 42.23 
𝐿𝑆𝑇𝑀  128.14 34.74 

 

3.1.2. Prediction with Null Anomaly 
The prediction done for sequence containing anomalous inputs for 

𝐿𝑆𝑇𝑀  , 𝐿𝑆𝑇𝑀  , 𝐿𝑆𝑇𝑀   𝑎𝑛𝑑 𝐿𝑆𝑇𝑀 with AU are respectively presented in Figure 6, 
Figure 7, Figure 8, and Figure 9. 

 
Figure 6. 𝐿𝑆𝑇𝑀𝑃2 prediction containing null anomalous data. 
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Figure 7. 𝐿𝑆𝑇𝑀𝑃4 prediction containing null anomalous data. 

 
Figure 8. 𝐿𝑆𝑇𝑀𝑇4 prediction containing null anomalous data. 
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Figure 9. 𝐿𝑆𝑇𝑀𝑁1 prediction containing null anomalous data. 

3.1.3. Control limit 𝑐 calculation 
The variables and results for the control limits 𝑐 are listed in Table 5. 

Table 5. Control limit 𝑐 variables. 

Model 𝝈𝑨𝑬𝒎𝒂𝒙 𝝈𝑨𝑬𝒎𝒆𝒂𝒏 𝝈𝑨𝑬𝒔𝒕𝒅  𝒄 

𝐿𝑆𝑇𝑀  271.61 251.86 5.92 3.33 
𝐿𝑆𝑇𝑀  34.58 32.39 0.74 2.95 
𝐿𝑆𝑇𝑀  12.15 11.35 0.26 3.13 
𝐿𝑆𝑇𝑀  158.71 149.51 3.56 2.58 

3.1.4. Anomaly Detection with CUSUM 
The CUSUM chart for anomaly detection associated with the predictions and the con-

trol limit 𝑐 are presented in Figure 10. The coordinates featured in the chart belong to the 
identified anomalies.  
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(a) (b) 

(c) (d) 

Figure 10. CUSUM chart for anomaly detection in 24h sequence (a) Anomaly detected in 𝐿𝑆𝑇𝑀𝑃2 prediction; (b) Anomaly detected 
in 𝐿𝑆𝑇𝑀𝑃4 prediction; (c) Anomaly detected in 𝐿𝑆𝑇𝑀𝑇4 prediction; (d) Anomaly not detected in 𝐿𝑆𝑇𝑀𝑁1 prediction. 

3.1.5. Anomaly Sequence Force Plot Visualization 
The SHAP force plot for explaining the anomalies are shown in Figure 11. The 

marked areas corresponding to the 6th and 7th instances are the tested anomaly instances. 
For illustration purpose, only instance 1 to 9 are shown. 
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(a) (b) 
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(c) (d) 

Figure 11. SHAP force plots for anomaly instances (a) Force Plot null anomaly instances in 𝐿𝑆𝑇𝑀  prediction; (b) Force Plot null 
anomaly instances in 𝐿𝑆𝑇𝑀  prediction; (c) Force Plot null anomaly instances in 𝐿𝑆𝑇𝑀  prediction; (d) Force Plot null anomaly 

instances in 𝐿𝑆𝑇𝑀  prediction. 

3.2. Case Study 2: Failure Prognostic on CMAPSS Turbofan Dataset 
CMAPPS (Commercial Modular Aero Propulsion System Simulation) Turbofan run 

to-failure datasets were published in 2008 by Nasa Prognostic Centre (PCoE) of Ames Re-
search Centre consisting of 4 complete sets of training, testing, and ground truth RUL for 
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numerous turbofan engines. The simulated data was obtained by simulating a variety of 
operational conditions and injecting faults of varying degradation degree. 

The chosen FD001 training and testing datasets consist each of 100 recorded turbofan 
degradations as summarized in Table 6. A single record corresponds to a turbofan whose 
health condition deteriorated after certain cycle, or failure start point, until breakdown 
[44]. Each turbofan fleet might be used in different operating conditions. As such the ex-
tent of degradation is different from one another. Each record is a time series comprising 
of Time (Cycle), 3 Operating Conditions (OC) and 21 sensor signals as presented in Ap-
pendix A. The RUL targets for the training dataset are not available, only the ground truth 
RUL are given. The OC refers to different operating regimes combination of Altitude (O-
42K ft.), Throttle Resolver Angle (20-100), and Mach Number (0-0.84) [44]. High level noise 
is incorporated, and the faults encountered are hidden by the effect of various operational 
conditions [45].   

Table 6. Turbofan datasets 

Dataset Fault Modes 
Operating 
Condition 

Train Units Test Units 

#1 1 1 100 100 
 

3.2.1. Data Preparation 
Only strictly monotonic sensors were selected [45]. These sensors are useful as they 

best represent trending degradation contrary to irregular and unchanged signals. 14 sen-
sor signals, corresponding to sensors 2,3,4,7,8,9,11,12,13,14,15,17,20 and 21 were used. To-
gether with the three OC’s, the total features used was 17.  

To obtain the RUL labels for training, piece-wise linear degradation was assumed 
[46,47]. Each fleet’s health was considered stable in the beginning, followed by a linear 
deterioration after the failure start point until breakdown. 

Originally, the RUL for a signal took the value of the recorded signal’s last cycle, or 
the signal sequence length, and degraded linearly until zero as shown for Fleet 1 in Figure 
12(a). The failure start point for each signal was identified using CUSUM with the control 
limit 𝑐 set to 5 standard deviations. Then, the mean of these failure start points was cal-
culated, in this case, resulting to cycle 46. Combining the linear degradation obtained ear-
lier and the mean failure start point, the transformed Fleet 1 RUL sequence is presented 
in Figure 12(b). To facilitate model’s generalization, all target RULs were capped to 50. 
The total signal sequence lengths and its respective RUL for training and testing datasets 
are presented in Appendix B.  

  
(a) (b) 

Figure 12. RUL targets modelling: (a) Initial: the recorded signal sequence length is 192, thus a linear degradation starting from 
RUL = 192 to RUL = 0 was modelled; (b) Final: piece wise linear degradation, combining 12(a) with failure start point at cycle 46. 
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3.2.2. Prognostic Performance 
The RUL prediction for Fleet 1 and Fleet 18 using the 17 features are illustrated re-

spectively in Figure 14 and Figure 15. These fleets were chosen because the former fleet’s 
testing data length and ground truth RUL follow the same trait as the training data while 
the latter fleet is not, as indicated in Appendix B. It is thus interesting to examine the 
uncertainty behavior between the two. 

The SHAP summary plot for the prediction of these fleets are depicted in Figure 13. 
As a matter of fact, almost all summary plots for the 100 testing fleets show the same order 
of features as Figure 13. One can thus choose the best set of features to improve the pre-
dictive performance. Accordingly, the model was also tested with the best 13 features or 
75% and the best 9 features or 50% of the original 17 features. Table 7 lists the combination 
of features tested. 

Table 7. Combination of features tested. 

Combination Features According to Contribution Order 

17 Features 
S8, S11, S4, S13, S15, OC1, S3, OC3, S12, S2, S21, S14, S20, S17, 

OC2, S7 and S9 

13 Features S8, S11, S4, S13, S15, OC1, S3, OC3, S12, S2, S21, S14 and S20 

9 Features S8, S11, S4, S13, S15, OC1, S3, OC3 and S12 

  
 

(a) (b) 

Figure 13. SHAP summary plot (a) Summary plot for Fleet 1 sequence prediction; (b) Summary plot for Fleet 18 sequence 
prediction.  

The average prognostic RMSE and early scoring results for 100 predictions using the 
17, 13 and 9 features are presented in Table 8. As shown, the model performed better in 
mostly all metrics with 13 features. It shows around 9% improvement in RMSE with AU 
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and 6% in RMSE with EU as well as 43% improvement in early scoring with AU and EU 
compared to 17 features. 

Table 8. Average prognostic performance with 17, 13 and 9 features. 

Results 17 Features 13 Features 9 Features 

RMSE with AU 16.20 14.68 14.75 

RMSE with EU 17.09 16.04 15.56 

Score with AU 724.13 409.10 412.37 

Score with EU 897.38 507.63 518.52 

 

 
Figure 14. Fleet 1 RUL prediction with AU and EU. 
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Figure 15. Fleet 18 RUL prediction with AU and EU. 

3.2.2. Performance Comparison with Published Methods 
The results using 13 features with AU compared with published methods are respec-

tively presented in Table 9 and Table 10. 

Table 9. RMSE comparison with published methods 

Results 
Proposed 
Method 

DBN [48] ELM [48] RNN [49] DCNN [49] BiLSTM [50] 

RMSE with 
AU 

14.68 15.21 17.27 13.44 12.61 13.65 

Table 10. Early score comparison with published methods 

Results Proposed 
Method 

DBN [48] ELM [48] RNN [49] DCNN [49] BiLSTM [50] 

Score with 
AU 

4.09 x 102 4.18 x 102 5.23 x 102 3.39 x 102 2.74 x 102 2.95 x 102 
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3.3. Explanation Evaluation 
3.3.1. Local Accuracy Verification 

The waterfall plot of the first instance on the first sequence of 𝐿𝑆𝑇𝑀   prediction is 
shown in Figure 16. From the illustration, it can be verified that the sum of Shapley values 
or contributions is equal to 𝑓(𝑥) − 𝛦 (𝑓̂(̂𝑋 ))  with 𝑓(𝑥)  =  −31.15  and 𝛦 (𝑓̂̂(𝑋 ))  =

 −30.573. The values are more accurately shown on top of the plot with the order of: P1, 
T1, N2 and 𝓂𝒻 .    

 
Figure 16. Waterfall plot of the first instance on the first sequence of 𝐿𝑆𝑇𝑀 . 

3.3.2. Consistency Verification 
The contribution of variable 𝓂𝒻 on the first test data instance was investigated as an 

example. For each output, the difference and contribution of 𝓂𝒻 , 𝛷 , was calculated:    

𝑃2_𝑡𝑜𝑡 ,  =  𝐿𝑆𝑇𝑀 (𝑧 , )  −  𝐿𝑆𝑇𝑀 (𝑧
\

, )  =  −3.273; 𝛷 _ _ (𝑓 , 𝑥)  =  −0.050 

𝑃2_𝑡𝑜𝑡  = 𝐿𝑆𝑇𝑀 (𝑧 , )  −  𝐿𝑆𝑇𝑀 (𝑧
\

, )  =  −14.893; 𝛷 _ _ (𝑓 , 𝑥) =  −0.198  

𝑃4_𝑡𝑜𝑡 ,  =  𝐿𝑆𝑇𝑀 (𝑧 , )  −  𝐿𝑆𝑇𝑀  (𝑧
\

, )  =  −0.962;  𝛷 _ _ (𝑓 , 𝑥)  =  −0.002 

𝑃4_𝑡𝑜𝑡  =  𝐿𝑆𝑇𝑀 (𝑧 , )  −  𝐿𝑆𝑇𝑀 (𝑧
\

, )  =  −1.182; 𝛷 _ _ (𝑓 , 𝑥)  =  −0.048 

𝑇4_𝑡𝑜𝑡 ,  =  𝐿𝑆𝑇𝑀 (𝑧 , )  − 𝐿𝑆𝑇𝑀 (𝑧
\

, ) =  0.219; 𝛷 _ _ (𝑓 , 𝑥)  =  0.002 

𝑇4_𝑡𝑜𝑡  =  𝐿𝑆𝑇𝑀 (𝑧 , )  − 𝐿𝑆𝑇𝑀 (𝑧
\

, ) =  −1.004;  𝛷 _ _ (𝑓 , 𝑥)  =  −0.006 

𝑁1_𝑡𝑜𝑡 ,  =  𝐿𝑆𝑇𝑀 (𝑧 , )  − 𝐿𝑆𝑇𝑀 (𝑧
\

, )  =  9.017; 𝛷 _ _ (𝑓 , 𝑥)  =  0.749  

𝑁1_𝑡𝑜𝑡  =  𝐿𝑆𝑇𝑀 (𝑧 , )  −  𝐿𝑆𝑇𝑀 (𝑧
\

, )  =  −3.030; 𝛷 _ _ (𝑓 , 𝑥)  =  −0.075 

 
These equal: 𝑃2_𝑡𝑜𝑡 ,  >  𝑃2_𝑡𝑜𝑡  ;  𝑃4_𝑡𝑜𝑡 , >  𝑃4_𝑡𝑜𝑡 ;  𝑇4_𝑡𝑜𝑡 , >  𝑇4_𝑡𝑜𝑡  and 𝑁1_𝑡𝑜𝑡 , >

𝑁1_𝑡𝑜𝑡 , thus  𝛷 _ _  >  𝛷 _ _ ;   𝛷 _ _ >  𝛷 _ _ ;  𝛷 _ _ >  𝛷 _ _  and 
𝛷 _ _  >  𝛷 _ _  as seen above. These results are illustrated in the waterfall plots in 
Figure 17. 
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(a) (b) 

 
(c) (d) 

(e) (f) 

 
(g) (h) 
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Figure 17. Waterfall plot for local feature contibution: (a) Waterfall plot 𝛷 _ _ (𝑓 , 𝑥); (b) Waterfall plot 𝛷 _ _ (𝑓 , 𝑥); 
(c) Waterfall plot 𝛷 _ _ (𝑓 , 𝑥); (d) Waterfall plot 𝛷 _ _ (𝑓 , 𝑥); (e) Waterfall plot 𝛷 _ _ (𝑓 , 𝑥); (f) Waterfall plot 
𝛷 _ _ (𝑓 , 𝑥); (g) Waterfall plot 𝛷 _ _ (𝑓 , 𝑥); (h) Waterfall plot 𝛷 _ _ (𝑓 , 𝑥). 

4. Discussion 

4.1. Explainable Anomaly Detection 
100% of the tested null anomalies were successfully detected with the help of AU 

indicator and Cusum changepoint detection as illustrated in Figure 10. The AU spiked, 
representing the unsurety of the model when it was fed with anomalous data, surpassing 
the healthy threshold 𝑐 limit at the instances of anomaly for all outputs.  

The force plots local explanation, linked to the anomaly instances shown in Figure 
11 highlight that 𝓂𝒻 , fuel mass flow rate and N2, power turbine rotational speed as re-
sponsible features causing the anomaly. During the initial instances before the anomalies, 
all features contributed to the prediction. When the consecutive anomalies occurred, the 
force of both features were amplified. In the 7th instance, all other feature forces were 
eclipsed, showing mostly 𝓂𝒻 and N2. However, on the 8th instance, the distribution of 
contributing forces became normal, with all the features taking part in the prediction. The 
red colored bar in the plot pushed the prediction positively while the blue colored bar 
dragged the prediction negatively. The width of the bar represents its contributing force 
magnitude while the values on these bars are the normalized test data values. The base 
value is the average output of the model during training phase.  

To improve the anomaly detection, one could lower the 𝑐 limit value, resulting to a 
faster detection. However, by doing so, the risk of false alarm increases. Considering that 
the tested anomalies are merely stochastic disturbance rather than a continuous one, the 
present 𝑐 limit definition is deemed acceptable.  
4.2. Explainable Prognostic 

Figure 15 depicts the prognostic result of Fleet 18. As can be seen, the AU shows a 
rising trend, signaling that the model is increasingly uncertain of its prediction, reflecting 
the predicted RUL sequence which is far from the ground truth RUL. The AU for Fleet 1 
prediction, however, indicates a decreasing trend as presented in Figure 14, mirroring the 
good prediction the model had made. The model thus becoming more and more confident 
of its sequential estimation. Meanwhile, the EU measure, manifest very small change in 
nearly the same scale for both fleets which is expected for the weight’s uncertainty. This 
uncertainty should not be influenced much by the change in input data.    

The summary plot global explanation ordered the features according to its contribu-
tion power in the sequence prediction as shown in Table 7. The top 5 variables influencing 
the prediction are physical fan speed, static pressure at HPC outlet, total temperature at 
LPT outlet, corrected fan speed and bypass ratio. The model’s predictive performance in-
creased around 6% to 9% while its early prediction showed 43% improvement with only 
13 of the most influencing features. The model performed a little worse with only 9 fea-
tures compared to 13, though it was still better than using all 17 inputs. The predictive 
power decreased by 0.5% and increased by 3% with AU and EU respectively while the 
early prediction ability decreased by 0.8% and 2% with AU and EU respectively compared 
to 13 features. However, considering that only 9 features were used instead than 13, this 
small performance drop is perfectly tolerable. Weighing all factors, one could even justify 
that the model with 9 features is better than the one with 13 features.  

The enhanced result is comparable to the best methods’ outcome in CMAPPS FD001 
dataset. It is true that some works fare better than the proposed framework. This is firstly 
due to a more complex structure adoption. The DCNN and RNN in [49] for example, has 
respectively five convolutional and five recurrent layers to learn the data while the 
BiLSTM in [50] possesses two BiLSTM layers and two fully connected layers. Secondly, 
the mentioned methods only produce point estimates results, without any quantification 
of uncertainty. Obviously, model’s generalization is easier in this case. Consequently, 
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without uncertainty measure, these works can only be experimental and cannot be ap-
plied in real-world applications.          
4.3. Explanation Evaluation 

This work demonstrated that SHAP explanation satisfies the Local Accuracy and 
Consistency criteria. By fulfilling these proprieties, the explanation also conforms to the 
Efficiency, Symmetry, Dummy and Additivity natures of Shapley values. Efficiency affirms 
that the sum of the feature contributions is equal to the difference between the instance 
prediction and the average prediction of all instances, Symmetry implies that two feature 
values' contributions should be identical if they contribute equally to all feasible coali-
tions. Dummy states that a feature that does not affect the predicted value should have a 
Shapley value of zero regardless of the coalition it is part of. Finally, the Additivity denotes 
that for an ensemble prediction, for a specific feature, one can calculate the Shapley value 
of the feature in each individual ensemble, average them, and get the Shapley value for 
the feature for the whole ensemble. 

5. Conclusions 
This article elaborates the application of SHAP model agnostic approach in explain-

ing the outputs of a Bayesian LSTM in anomaly detection and prognostic tasks of gas tur-
bines using real and simulated datasets. The forecast uncertainty, generated by the Bayes-
ian model, broaden the explanation scope to include model’s confidence, strengthening 
the explanation. It was also exploited as anomaly indicator. SHAP global explanation was 
used to enhance prognostic performance by identifying the most contributing features in 
the prediction. All the anomalous instances were detected owing to the uncertainty indi-
cator. Moreover, the model’s RMSE increased around 6% to 9% while its early prediction 
ability showed 43% improvement thanks to SHAP. These results are comparable to the 
best published methods in the problem. Finally, the generated explanation verifies the 
Local Accuracy and Consistency proprieties, and by doing so validates the Efficiency, Sym-
metry, Dummy and Additivity natures of Shapley values. This paper shows how SHAP and 
deep learning uncertainty form a broader explanation scope while simultaneously 
demonstrating SHAP ability in enhancing PHM performance, highlighting its potential as 
an easy to use, flexible and powerful XAI technique. 
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Appendix A 

Table 11. Turbofan Sensors’ Description. 

Sensor References Description Unit 
S1 𝑇  Total temperature fan inlet 0R 
S2 𝑇  Total temperature at LPC outlet 0R 
S3 𝑇  Total temperature at HPC outlet 0R 
S4 𝑇  Total temperature at LPT outlet 0R 
S5 𝑃  Pressure at fan inlet Psia 
S6 𝑃  Total pressure in bypass-duct Psia 
S7 𝑃  Total pressure at HPC outlet Psia 
S8 𝑁𝑓 Physical fan speed RPM 
S9 𝑁𝑐 Physical core speed RPM 
S10 𝐸𝑝𝑟 Engine pressure ratio (P50/P2) N/A 
S11 𝑃𝑠  Static pressure at HPC outlet psia 
S12 𝑃ℎ𝑖 Ratio of fuel flow to Ps30 Pps/psi 
S13 𝑁𝑅𝑓 Corrected fan speed RPM 
S14 𝑁𝑅𝑐 Corrected core speed RPM 
S15 𝐵𝑃𝑅 Bypass ratio N/A 
S16 𝑓𝑎𝑟𝐵 Burner fuel-air ratio N/A 
S17 ℎ𝑡𝐵𝑙𝑒𝑒𝑑 Bleed enthalpy N/A 
S18 𝑁𝑓_𝑑𝑚𝑑 Demanded fan speed RPM 
S19 𝑃𝐶𝑁𝑓𝑅_𝑑𝑚𝑑 Demanded corrected fan speed RPM 
S20 𝑊  HPT coolant bleed lbm/s 
S21 𝑊  LPT coolant bleed lbm/s 

Appendix B 

(a) (b) 
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(c) (d) 

Figure 18. Data sequence length & associated RUL (a) Training data sequence length; (b) Training data RUL; (c) Testing 
data sequence length; (d) Ground truth RUL. 
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