Preprint
Article

This version is not peer-reviewed.

Dynamics of Cyanobacterial Global Metabolom in Response to Light and Temperature Variations

A peer-reviewed article of this preprint also exists.

Submitted:

23 August 2021

Posted:

25 August 2021

You are already at the latest version

Abstract
Cyanobacteria are microorganisms able to adapt to a wide variety of environmental conditions and abiotic stresses. They produce a very large number of metabolites that can participate in the adaptation of cyanobacteria to a large range of resources such as light, temperature, or nutrient. The metabolites variation is one way to understand the physiological status and adaptation of cells. In this study, we aim to understand how the diversity and the dynamics of the whole metabolome is dependent of the growth phases and under control of abiotic factors (e.g. light intensity and temperature). The cyanobacteria Aliinostoc sp. PMC 882.14 was selected for its large number of biosynthetic gene clusters. Metabolomes were analyzed by using mass spectrometry (qTOF-MS/MS) combined with untargeted analysis to investigate the metabolite dynamics. Significant variations were characterized between exponential and stationary phases, whatever the culture conditions (“control”, “higher light”, or “higher temperature”). ”Higher light” and “higher temperature” favored the synthesis of metabolites belonging to the same molecular families. Among highly regulated metabolites, we observe the presence of mycosporine-like amino acids (MAAs), and various variants of somamides, microginins, and microviridins. Through Aliinostoc sp. PMC 882.14, this study shows the importance of knowing the physiological state of cyanobacteria for comparative global metabolomics and questions the regulation processes involve into metabolite families production. Our results also open up new perspectives in the context of the production of targeted bioactive metabolites.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated