Preprint
Article

This version is not peer-reviewed.

A Novel Heterogeneous Parallel Convolution Bi-LSTM for Speech Emotion Recognition

A peer-reviewed article of this preprint also exists.

Submitted:

20 August 2021

Posted:

23 August 2021

You are already at the latest version

Abstract
Speech emotion recognition remains a heavy lifting in natural language processing. It has strict requirements to the effectiveness of feature extraction and that of acoustic model. With that in mind, a Heterogeneous Parallel Convolution Bi-LSTM model is proposed to address these challenges. It consists of two heterogeneous branches: the left one contains two dense layers and a Bi-LSTM layer, while the right one contains a dense layer, a convolution layer, and a Bi-LSTM layer. It can exploit the spatiotemporal information more effectively, and achieves 84.65%, 79.67%, and 56.50% unweighted average recall on the benchmark databases EMODB, CASIA, and SAVEE, respectively. Compared with the previous research results, the proposed model achieves better performance stably.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated