Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Entomotoxic Activity of the Extracts from the Fungus, Alternaria tenuissima and Its Major Metabolite, Tenuazonic Acid

Version 1 : Received: 16 August 2021 / Approved: 17 August 2021 / Online: 17 August 2021 (08:36:56 CEST)

A peer-reviewed article of this Preprint also exists.

Salimova, D.; Dalinova, A.; Dubovik, V.; Senderskiy, I.; Stepanycheva, E.; Tomilova, O.; Hu, Q.; Berestetskiy, A. Entomotoxic Activity of the Extracts from the Fungus, Alternaria tenuissima and Its Major Metabolite, Tenuazonic Acid. J. Fungi 2021, 7, 774. Salimova, D.; Dalinova, A.; Dubovik, V.; Senderskiy, I.; Stepanycheva, E.; Tomilova, O.; Hu, Q.; Berestetskiy, A. Entomotoxic Activity of the Extracts from the Fungus, Alternaria tenuissima and Its Major Metabolite, Tenuazonic Acid. J. Fungi 2021, 7, 774.

Abstract

Study of fungal antibiotics in their competitive interactions with arthropods may lead to development novel biorational insecticides. Extracts of Alternaria tenuissima MFP253011 obtained by various methods showed a wide range of biological activity, including entomotoxic properties. Analysis of their composition and bioactivity allowed to reveal several known mycotoxins and unidentified compounds that may be involved in entomotoxic activity of the extracts. Among them, tenuazonic acid (TeA), which was the major component of the A. tenuissima extracts, was found the most likely to have larvicidal activity against Galleria mellonella. In the intrahaemocoel injection bioassay, TeA was toxic to G. mellonella and of Zophobas morio with LT50 6 and 2 days, respectively, at the level of 50 µg/larva. Administered orally, TeA inhibited growth of G. mellonella larvae and caused mortality of Acheta domesticus imagines (LT50 7 days) at a concentration of 250 µg/g of feed. TeA showed weak contact-intestinal activity against the two phytophages, Tetranychus urticae and Schizaphis graminum, causing the 12 and 40% of mortality at a concentration of 1 mg/mL. TeA was cytotoxic to Sf9 cell line (IC50 25 µg/mL). Thus, model insect G. mellonella and cell line Sf9 could be used for a further toxicological characterization of TeA.

Keywords

Alternaria tenuissima; extract; bioassays; PCA; tenuazonic acid; Galleria mellonella; Zophobas morio; Acheta domesticus; Tetranychus urticae; Schizaphis graminum; Sf9

Subject

Biology and Life Sciences, Immunology and Microbiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.