Working Paper Article Version 1 This version is not peer-reviewed

Gap Reconstruction in Optical Motion Capture Sequences Using Neural Networks

Version 1 : Received: 2 August 2021 / Approved: 3 August 2021 / Online: 3 August 2021 (11:52:46 CEST)

A peer-reviewed article of this Preprint also exists.

Skurowski, P.; Pawlyta, M. Gap Reconstruction in Optical Motion Capture Sequences Using Neural Networks. Sensors 2021, 21, 6115. Skurowski, P.; Pawlyta, M. Gap Reconstruction in Optical Motion Capture Sequences Using Neural Networks. Sensors 2021, 21, 6115.

Journal reference: Sensors 2021, 21, 6115
DOI: 10.3390/s21186115

Abstract

Optical motion capture is a mature contemporary technique for the acquisition of motion data, alas it is non-error-free. Due to technical limitations and occlusions of markers, gaps might occur in such recordings. The article reviews various neural network architectures applied for gap filling problem in motion capture sequences within FBM framework providing the representation for body kinematic structure. The results are compared with interpolation and matrix completion methods. We found out, that for longer sequences simple linear feedforward neural networks can outperform the other, sophisticated architectures. We were also able to identify, that acceleration and monotonicity of input sequence are the parameters that have a notable impact on the obtained results.

Keywords

motion capture; neural networks; reconstruction; gap filling; FFNN; LSTM; BILSTM; GRU

Subject

MATHEMATICS & COMPUTER SCIENCE, Algebra & Number Theory

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.