Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Evolutionary Genomic Comparisons of Chelonid Herpesvirus 5 (chhv5) From Fibropapillomatosis-Afflicted Green (Chelonia Mydas), Olive Ridley (Lepidochelys Olivacea), And Kemp’s Ridley (Lepidochelys Kempii) Sea Turtles.

Version 1 : Received: 16 July 2021 / Approved: 26 July 2021 / Online: 26 July 2021 (11:58:37 CEST)

A peer-reviewed article of this Preprint also exists.

Whitmore, L.; Yetsko, K.; Farrell, J.A.; Page-Karjian, A.; Daniel, W.; Shaver, D.J.; Frandsen, H.R.; Walker, J.S.; Crowder, W.; Bovery, C.; Rollinson Ramia, D.; Burkhalter, B.; Ryan, E.; Duffy, D.J. Evolutionary Comparisons of Chelonid Alphaherpesvirus 5 (ChHV5) Genomes from Fibropapillomatosis-Afflicted Green (Chelonia mydas), Olive Ridley (Lepidochelys olivacea) and Kemp’s Ridley (Lepidochelys kempii) Sea Turtles. Animals 2021, 11, 2489. Whitmore, L.; Yetsko, K.; Farrell, J.A.; Page-Karjian, A.; Daniel, W.; Shaver, D.J.; Frandsen, H.R.; Walker, J.S.; Crowder, W.; Bovery, C.; Rollinson Ramia, D.; Burkhalter, B.; Ryan, E.; Duffy, D.J. Evolutionary Comparisons of Chelonid Alphaherpesvirus 5 (ChHV5) Genomes from Fibropapillomatosis-Afflicted Green (Chelonia mydas), Olive Ridley (Lepidochelys olivacea) and Kemp’s Ridley (Lepidochelys kempii) Sea Turtles. Animals 2021, 11, 2489.

Abstract

The spreading global sea turtle fibropapillomatosis (FP) epizootic is threatening some of Earth’s ancient reptiles, adding to the plethora of threats faced by these keystone species. Understanding this neoplastic disease, and its likely aetiological pathogen, chelonid alphaherpesvirus 5 (ChHV5), is crucial to understand how the disease impacts sea turtle populations and species and the future trajectory of disease incidence. We generated 20 ChHV5 genomes, from three sea turtle species, to better understand the viral variant diversity and gene evolution of this oncogenic virus. We revealed previously underappreciated genetic diversity within this virus (with an average of 2,035 single nucleotide polymorphisms [SNPs], 1.54% of the ChHV5 genome) and identified genes under the strongest evolutionary pressure. Furthermore, we investigated the phylogeny of ChHV5 at both genome and gene level, confirming the propensity of the virus to be interspecific with related variants able to infect multiple sea turtle species. Finally, we revealed unexpected intra-host diversity, with up to 0.15% of the viral genome varying between ChHV5 genomes isolated from different tumours concurrently arising within the same individual. These findings offer important insights into ChHV5 biology and provide genomic resources for this oncogenic virus.

Keywords

CFPHV; ChHV5; phylogenetics; phylogenomics; viral evolution and diversity; marine turtles; fibropapillomatosis

Subject

Biology and Life Sciences, Anatomy and Physiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.