Working Paper Article Version 1 This version is not peer-reviewed

Mechanical Design and Performance Analyses of a Rubber-Based Peristaltic Micro-Dosing Pump

Version 1 : Received: 20 July 2021 / Approved: 21 July 2021 / Online: 21 July 2021 (10:12:28 CEST)

A peer-reviewed article of this Preprint also exists.

Zehetbauer, T.; Plöckinger, A.; Emminger, C.; Çakmak, U.D. Mechanical Design and Performance Analyses of a Rubber-Based Peristaltic Micro-Dosing Pump. Actuators 2021, 10, 198. Zehetbauer, T.; Plöckinger, A.; Emminger, C.; Çakmak, U.D. Mechanical Design and Performance Analyses of a Rubber-Based Peristaltic Micro-Dosing Pump. Actuators 2021, 10, 198.

Journal reference: Actuators 2021, 10, 198
DOI: 10.3390/act10080198

Abstract

Low pressure fluid transport (1) applications often require low and precise volumetric flow rates (2) including low leakage to reduce additional costly and complex sensors. A peristaltic pump de-sign (3) was realized, with the fluid’s flexible transport channel formed by a solid cavity and the wobbling plate comprising a rigid and a soft layer (4). In operation, the wobbling plate is driven externally by an electric motor, hence, the soft layer is contracted and unloaded (5) during pump-cycles transporting fluid from low to high pressure sides. A thorough characterization of the pump system is required to design and dimension the components of the peristaltic pump. To capture all these parameters and their dependencies on various operation-states, often complex and long-lasting dynamic 3D FE-simulations are required. We present, here, a holistic design methodology (6) including analytical as well as numerical calculations, and experimental valida-tions for a peristaltic pump with certain specifications of flow-rate range, maximum pressures, and temperatures. An experimental material selection process is established and material data of candidate materials (7) (liquid silicone rubber, acrylonitrile rubber, thermoplastic-elastomer) are directly applied to predict the required drive torque. For the prediction, a semi-physical, analyti-cal model was derived and validated by characterizing the pump prototype.

Keywords

hydraulic pump; micro-dosing; peristaltic; hyper-elasticity; viscoelasticity; holistic design methodology; elastomer compound

Subject

ENGINEERING, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.

We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.