Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Hybrid Carrier Frequency Modulation Based on Rotor Position to Reduce Sideband Vibro-acoustics in PMSM Used by Electric Vehicle

Version 1 : Received: 12 July 2021 / Approved: 13 July 2021 / Online: 13 July 2021 (10:45:49 CEST)

A peer-reviewed article of this Preprint also exists.

Qiu, Z.; Chen, Y.; Lin, X.; Cheng, H.; Kang, Y.; Liu, X. Hybrid Carrier Frequency Modulation Based on Rotor Position to Reduce Sideband Vibro-Acoustics in PMSM Used by Electric Vehicles. World Electr. Veh. J. 2021, 12, 100. Qiu, Z.; Chen, Y.; Lin, X.; Cheng, H.; Kang, Y.; Liu, X. Hybrid Carrier Frequency Modulation Based on Rotor Position to Reduce Sideband Vibro-Acoustics in PMSM Used by Electric Vehicles. World Electr. Veh. J. 2021, 12, 100.

Abstract

In the permanent magnet synchronous motor (PMSM) drive system, the unwilling and ear-piercing vibro-acoustics caused by high-frequency sideband harmonics becomes unacceptable in the electric vehicle application. In this paper, a modified space vector pulse-width modulation (SVPWM) technique implemented with hybrid carrier frequency modulation (HCFM) is provided to reduce the sideband current harmonic components and vibro-acoustic responses. The principle and implementation of the proposed HCFM technique are firstly presented, in which the fixed carrier frequency is improved with the sawtooth and random signal-based coupling modulation based on the rotor position. For verification, the experiment tests are carried out on a prototype 12/10 PMSM and microcontroller unit. The effectiveness of the HCFM technique can hence be confirmed, in which the sideband vibro-acoustics reduction shows more effectively than that in conventional random PWM. The proposed approach may provide a new route in noise-cancelling and electromagnetic compatibility for the electric drive powertrain.

Keywords

permanent magnet synchronous motor; sideband harmonic component; space vector pulse-width modulation; carrier frequency modulation; vibro-acoustic responses.

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.