Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

A Review on Mental Stress Assessment Methods Using EEG Signals

Version 1 : Received: 8 July 2021 / Approved: 12 July 2021 / Online: 12 July 2021 (12:06:13 CEST)

How to cite: Katmah, R.; Al-Shargie, F.; Tariq, U.; Babiloni, F.; Al-Mughairbi, F.; Al-Nashash, H. A Review on Mental Stress Assessment Methods Using EEG Signals. Preprints 2021, 2021070255 (doi: 10.20944/preprints202107.0255.v1). Katmah, R.; Al-Shargie, F.; Tariq, U.; Babiloni, F.; Al-Mughairbi, F.; Al-Nashash, H. A Review on Mental Stress Assessment Methods Using EEG Signals. Preprints 2021, 2021070255 (doi: 10.20944/preprints202107.0255.v1).

Abstract

Mental stress is one of the serious factors that lead to many health problems. Scientists and physicians have developed various tools to assess the level of mental stress in its early stages. Several neuroimaging tools have been proposed in the literature to assess mental stress in the workplace. Electroencephalogram (EEG) signal is one important candidate because it contain rich information about mental states and condition. In this paper, we review the existing EEG signal analysis methods on the assessment of mental stress. The review highlights the critical differences between the research findings and argues that variations of the data analysis methods contribute to several contradictory results. The variations in results could be due to various factors including lack of standardized protocol, the brain region of interest, stressor type, experiment duration, proper EEG processing, feature extraction mechanism, and type of classifier. Therefore, the significant part related to mental stress recognition is choosing the most appropriate features. In particular, a complex and diverse range of EEG features, including time-varying, functional, and dynamic brain connections, requires integration of various methods to understand their associations with mental stress. Over this, the review suggests fusing the cortical activations with the connectivity network measures and deep learning approaches to improve the accuracy of mental stress level assessment.

Subject Areas

mental stress; EEG; data analysis; connectivity network; machine Learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.