Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Collagenase-Expressing Salmonella Targets Major Collagens in Pancreatic Cancer and Improves Immune Checkpoint Blockade

Version 1 : Received: 25 June 2021 / Approved: 28 June 2021 / Online: 28 June 2021 (10:36:31 CEST)

A peer-reviewed article of this Preprint also exists.

Ebelt, N.D.; Zamloot, V.; Zuniga, E.; Passi, K.B.; Sobocinski, L.J.; Young, C.A.; Blazar, B.R.; Manuel, E.R. Collagenase-Expressing Salmonella Targets Major Collagens in Pancreatic Cancer Leading to Reductions in Immunosuppressive Subsets and Tumor Growth. Cancers 2021, 13, 3565. Ebelt, N.D.; Zamloot, V.; Zuniga, E.; Passi, K.B.; Sobocinski, L.J.; Young, C.A.; Blazar, B.R.; Manuel, E.R. Collagenase-Expressing Salmonella Targets Major Collagens in Pancreatic Cancer Leading to Reductions in Immunosuppressive Subsets and Tumor Growth. Cancers 2021, 13, 3565.

Abstract

Therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC) can be attributed, in part, to a dense extracellular matrix containing excessive collagen deposition. Here, we describe a novel Salmonella typhimurium (ST) vector expressing the bacterial collagenase Streptomyces omiyaensis trypsin (SOT), a serine protease known to hydrolyze collagens I and IV, which are predominantly found in PDAC. Utilizing aggressive models of PDAC, we show that ST-SOT selectively degrades intratumoral collagen leading to enhancement of immune checkpoint blockade (ICB) therapy in tumor-bearing mice. Ultimately, we found that ST-SOT treatment significantly modifies the intratumoral immune landscape to generate a microenvironment more conducive to ICB.

Keywords

pancreatic ductal adenocarcinoma; targeted therapies; therapeutic resistance; tumor microenvironment; desmoplasia; collagen; collagenase; attenuated Salmonella typhimurium

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.