Preprint
Article

This version is not peer-reviewed.

A Brief Study on a Novel Approach for the Gearbox Fault Diagnosis

Submitted:

25 June 2021

Posted:

28 June 2021

You are already at the latest version

Abstract
Fault diagnosis of the gearbox is a decisive part of the modern industry to find the many gearbox defects like gear tooth crack, chipped or broken, etc. But sometimes, the nonstationary properties of vibration signal and low energy of minimal faults make this procedure very challenging. Previously, many types of techniques have been developed for gearbox condition monitoring. But most of the methods are dealing with conventional techniques of the gearbox condition monitoring, such as time-domain analysis or frequency domain analysis. Most of the conventional methods are not suitable for the nonstationary vibration signal. Thus, this paper presents a novel gearbox fault diagnosis technique using conditional temporal moments and an optimizable support vector machine (SVM). This work also presents an integrated features extraction technique based on the standard features, i.e., statistical and spectral features with the combinations of moment features. The impact of the four conditional temporal moments of each gearbox condition is also presented. This work shows that the proposed method successfully classifies and categorizes the gearbox faults at an early stage.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated