Preprint
Article

This version is not peer-reviewed.

Neural Network-based Active Fault-Tolerant Control Design for Unmanned Helicopter with Sensor Faults

A peer-reviewed article of this preprint also exists.

Submitted:

13 June 2021

Posted:

14 June 2021

You are already at the latest version

Abstract
A novel adaptive neural network-based fault-tolerant control scheme is proposed for six-degree freedom nonlinear helicopter dynamic. The proposed approach can detect and mitigate sensors' faults in real-time. An adaptive observer-based on neural network (NN) and extended Kalman filter (EKF) is designed, which incorporates the helicopter's dynamic model to detect faults in the navigation sensors. Based on the detected faults, an active fault-tolerant controller, including three loops of dynamic inversion, is designed to compensate for the occurred faults in real-time. The simulation results showed that the proposed approach is able to detect and mitigate different types of faults on the helicopter navigation sensors, and the helicopter tracks the desired trajectory without any interruption.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated