Working Paper Article Version 1 This version is not peer-reviewed

Maximum Admissible Slip of Tractor Wheels Without Disturbing the Soil Structure

Version 1 : Received: 10 June 2021 / Approved: 11 June 2021 / Online: 11 June 2021 (11:03:10 CEST)

How to cite: Bulgakov, V.; Aboltins, A.; Beloev, H.; Nadykto, V.; Kyurchev, V.; Adamchuk, V.; Kaminskiy, V. Maximum Admissible Slip of Tractor Wheels Without Disturbing the Soil Structure. Preprints 2021, 2021060316 Bulgakov, V.; Aboltins, A.; Beloev, H.; Nadykto, V.; Kyurchev, V.; Adamchuk, V.; Kaminskiy, V. Maximum Admissible Slip of Tractor Wheels Without Disturbing the Soil Structure. Preprints 2021, 2021060316

Abstract

One of the most important parameters that characterize the traction-coupling properties of a wheeled tractor is its slip. The more tractor's gross traction, the higher its traction-coupling properties. But, this gross traction should not exceed its maximum possible value, which, in turn out, is to be determined by the maximum permissible slip. This article provides the equation to calculate this crucial parameter and establishes the dependencies between the tractor's slip and soil structure coefficient. It was shown that the value basically depends on such soil characteristics as the bulk deformation coefficient and the coefficient of rolling resistance. Calculations showed that for the average value of the soil bulk deformation coefficient at, the average value of rolling resistance coefficient at 0.16, the ratio value of the maximum permissible soil pressure to the tractor wheel rolling radius at the maximum permitted amount slip of the tractor wheels should not exceed 15%. With more slip, the soil structure deteriorates significantly. In this case, its structure coefficient may be less than critical, equal to 0.4.

Keywords

slip; gross traction; soil structure; soil bulk deformation

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.