Preprint
Article

Estimation of Lane-Level Traffic Flow by Using Deep Learning Technique

This version is not peer-reviewed.

Submitted:

01 June 2021

Posted:

01 June 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
This paper proposes a neural network which fuses the data received from a camera system on a gantry, to detect moving objects and calculate relative position and velocity of the vehicles traveling on a freeway, this information is used to estimate the traffic flow. To estimate the traffic flow at both microscopic and macroscopic view, this paper used YOLO v4 and DeepSORT for vehicle detection and tracking, then counting the number of vehicles pass through the freeway by drawing virtual lines and hot zones, also counting the velocity of each vehicles. The information is then pass to the traffic control center, in order to monitoring and control traffic flow on freeways, and analyzing freeway conditions.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

600

Views

283

Comments

1

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated