Preprint
Article

This version is not peer-reviewed.

Autonomous Driving Implementation in an Experimental Environment

Submitted:

23 May 2021

Posted:

24 May 2021

You are already at the latest version

Abstract
Autonomous systems require identifying the environment and it has a long way to go before putting it safely into practice. In autonomous driving systems, the detection of obstacles and traffic lights are of importance as well as lane tracking. In this study, an autonomous driving system is developed and tested in the experimental environment designed for this purpose. In this system, a model vehicle having a camera is used to trace the lanes and avoid obstacles to experimentally study autonomous driving behavior. Convolutional Neural Network models were trained for Lane tracking. For the vehicle to avoid obstacles, corner detection, optical flow, focus of expansion, time to collision, balance calculation, and decision mechanism were created, respectively.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated