Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Durum Wheat Yield and N Uptake as Affected by N Rate, Timing and Source in Two Mediterranean Environments

Version 1 : Received: 25 May 2021 / Approved: 27 May 2021 / Online: 27 May 2021 (07:43:23 CEST)

A peer-reviewed article of this Preprint also exists.

Pampana, S.; Mariotti, M. Durum Wheat Yield and N Uptake as Affected by N Source, Timing, and Rate in Two Mediterranean Environments. Agronomy 2021, 11, 1299. Pampana, S.; Mariotti, M. Durum Wheat Yield and N Uptake as Affected by N Source, Timing, and Rate in Two Mediterranean Environments. Agronomy 2021, 11, 1299.

Abstract

In Nitrate Vulnerable Zones (NVZ) site-specific techniques are needed to match N availability with durum wheat (Triticum turgidum subsp. durum Desf.) requirements. Enhanced-efficiency fertilizers (EEF) can improve efficient N supply and reduce leaching, thus contributing to sustainable agriculture. To study the effects of rates, sources and timings of nitrogen application, two-year field experiments were carried out at two Mediterranean NVZs of Central Italy (Pisa and Arezzo). The trial compared: i) two N rates: one based on the crop N requirements (NO), the other on the Action Programmes’ prescriptions of the two NVZ (NAP); ii) three N sources (urea, methylene urea (MU), and nitrification inhibitor (NI) 3,4-Dimethylpyrazole phosphate (DMPP); and two top-dressing timings (1st tiller visible and 1st node detectable). Grain yield and yield components were determined, together with N uptake. Results showed that: i) grain and biomass production were reduced with NAP at both locations; ii) urea performed better than slow-release fertilizers; iii) the best application time varied depending on N source and location: at Pisa enhanced-efficiency fertilizers achieved higher yields when applied earliest, while for urea the contrary was true; at Arezzo different N fertilizers showed similar performances between the two application timings. Different behaviors of top-dressing fertilizers at the two localities could be related to the diverse patterns of temperatures and rainfall. Therefore, optimal fertilization strategies vary according to environmental conditions.

Keywords

3,4-Dimethylpyrazole phosphate; Durum Wheat; Environmental impact; Methylene Urea; Nitrogen Management; Nitrate-Vulnerable zones; Sustainable Agriculture; Urea

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.