Submitted:

24 May 2021

Posted:

25 May 2021

Read the latest preprint version here

A peer-reviewed article of this preprint also exists.

Abstract
A technique of fabrication of bacterial cellulose-based films with CeO2 nanofiller has been developed. The structural and morphological characteristics of the materials have been studied, their thermal and mechanical properties in dry and swollen states having been determined. The preparation methodology gives way to obtaining composites with the uniform distribution of nanoparticles. The catalytic effect of ceria regarding thermal oxidative destruction of cellulose was confirmed by TGA and DTA methods. An increase in CeO2 content leads to a rise in the elastic modulus (1.27-fold rise caused by the introduction of 5 wt.% of the nanofiller into polymer) and strength of the films. This effect is explained by the formation of additional links between polymer macro-chains via the nanoparticles’ surface. The materials fabricated are characterized by a limited swellability in water. Swelling causes a 20-30-fold drop in the stiffness of the material, the mechanical properties of the films in a swollen state remaining germane to their practical use. The application of the composite films in cell engineering as substrates for the stem cells proliferation has been studied. The increase in CeO2 content in the films enhanced the proliferative activity of embryonic mouse stem cells. The cells cultured on the scaffold containing 5 wt.% of ceria demonstrated increased cell survival and migration activity. Analysis of gene expression confirmed the improved cultivation conditions on CeO2-containing scaffolds.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

611

Views

712

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated