Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Crosslinking Strategies for Microfluidic Production of Microgels

Version 1 : Received: 16 May 2021 / Approved: 18 May 2021 / Online: 18 May 2021 (11:05:01 CEST)

A peer-reviewed article of this Preprint also exists.

Chen, M.; Bolognesi, G.; Vladisavljević, G.T. Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules 2021, 26, 3752. Chen, M.; Bolognesi, G.; Vladisavljević, G.T. Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules 2021, 26, 3752.

Abstract

This article provides a systematic review of the crosslinking strategies used to produce microgel particles in microfluidic chips. Various ionic crosslinking methods for gelation of charged pol-ymers are discussed, including external gelation via crosslinkers dissolved or dispersed in the oil phase, internal gelation methods using crosslinkers added to the dispersed phase in their non-active forms, such as chelating agents, photo-acid generators, sparingly soluble or slowly hydrolyzing compounds, and methods involving competitive ligand exchange, rapid mixing of polymer and crosslinking streams, and merging polymer and crosslinker droplets. Covalent crosslinking methods using enzymatic oxidation of modified biopolymers, photo-polymerization of crosslinkable monomers or polymers, and thiol-ene “click” reactions are also discussed, as well as the methods based on sol-gel transitions of stimuli responsive polymers triggered by pH or temperature change. In addition to homogeneous microgel particles, the production of structurally heterogeneous particles such as composite hydrogel particles entrapping droplet interface bi-layers, core-shell particles, organoids, and Janus particles are also discussed. Microfluidics offers the ability to precisely tune chemical composition, size, shape, surface morphology, and internal structure of microgels by bringing in contact multiple fluid streams in a highly controlled fashion using versatile channel geometries and flow configurations and allowing controlled crosslinking.

Keywords

Microgel; Janus particle; ionotropic gelation; crosslinking; cell encapsulation; enzymatic cross-linking; photopolymerization; hierarchical microgels; composite microgels; microfluidics.

Subject

Engineering, Industrial and Manufacturing Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.