Preprint
Article

This version is not peer-reviewed.

Integrating Predictive Maintenance in Adaptive Process Scheduling for a Safe and Efficient Industrial Process

A peer-reviewed article of this preprint also exists.

Submitted:

30 April 2021

Posted:

05 May 2021

You are already at the latest version

Abstract
Predictive maintenance (PM) algorithms are widely applied for detecting operational anomalies on industrial processes to trigger maintenance before a possible breakdown; however, much less focus has been devoted to the use of such PM predictions as feedback in automated process control mechanisms. They usually integrate preventive solutions to protect the machines, usually causing downtimes. The premise of this study is to develop a holistic adaptive process scheduling mechanism that incorporates PM analysis as a safety component to optimize the operation mode of an industrial process toward preventing breakdowns while maintaining its availability and operational state, thereby reducing downtimes. As PM is largely a data-driven approach; hence, relies on the setup, we first compare different PM approaches and identify a one-class support vector machine (OCSVM) as the best performing option for the anomaly detection on our setup. Then, we propose a novel pipeline to integrate maintenance predictions into a real-time adaptive process scheduling mechanism. It schedules for the most suitable operation, i.e., optimizing for machine health and process efficiency, according to the abnormal readings. To demonstrate the pipeline on action, we implement our approach on a small-scale conveyor belt system utilizing our Internet of Things (IoT) framework. The results show that our PM-based adaptive process control provides an efficient process with less or no downtime. We also conclude that a PM approach does not provide sufficient efficiency without its integration into an autonomous planning process.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated