Preprint
Article

This version is not peer-reviewed.

Adaptive Online Learning for Time Series Prediction

A peer-reviewed article of this preprint also exists.

Submitted:

19 April 2021

Posted:

22 April 2021

You are already at the latest version

Abstract
We study the problem of predicting time series data using the autoregressive integrated moving average (ARIMA) model in an online manner. Existing algorithms require model selection, which is time consuming and inapt for the setting of online learning. Using adaptive online learning techniques, we develop algorithms for fitting ARIMA models with fewest possible hyperparameters. We analyse the regret bound of the proposed algorithms and examine their performance using experiments on both synthetic and real world datasets
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated