Preprint
Article

This version is not peer-reviewed.

Effect of Graphene on Ice Polymorph

A peer-reviewed article of this preprint also exists.

Submitted:

14 April 2021

Posted:

15 April 2021

You are already at the latest version

Abstract
Recently, ice with the stacking disorder structure, consisting of random sequences of cubic ice (Ic) and hexagonal ice (Ih) layers, is reported to be more stable than pure Ih/Ic. While, due to a much lower free energy barrier of heterogeneous nucleation, in practice, the freezing process of water is usually controlled by heterogeneous nucleation which is triggered by an external medium. Herein, molecular dynamic simulations were carried out to explore the polymorph dependence of ice on the lattice structure of substrates. It turns out that, during the nucleation stage, the polymorph of ice nuclei can be severely altered by the graphene substrate, on which the Ih was found to occupy an absolute majority in new-formed ice. This can be attributed to the structure similarity between graphene and basal face of Ih. Besides the nucleation stage, our results suggest that the substrate can not affect the polymorph of ice which is far from the graphene surface. The polymorph selectivity of graphene to Ih will diminish with the growth of ice layer.
Keywords: 
;  ;  ;  
Subject: 
Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated