Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Chromosome and Molecular Analyses Reveal Significant Intraspecific Karyotype Diversity and Provide New Evidence on the Origin of Tetraploid Grass Aegilops columnaris

Version 1 : Received: 13 April 2021 / Approved: 14 April 2021 / Online: 14 April 2021 (12:29:27 CEST)

A peer-reviewed article of this Preprint also exists.

Badaeva, E.D.; Chikida, N.N.; Fisenko, A.N.; Surzhikov, S.A.; Belousova, M.K.; Özkan, H.; Dragovich, A.Y.; Kochieva, E.Z. Chromosome and Molecular Analyses Reveal Significant Karyotype Diversity and Provide New Evidence on the Origin of Aegilops columnaris. Plants 2021, 10, 956. Badaeva, E.D.; Chikida, N.N.; Fisenko, A.N.; Surzhikov, S.A.; Belousova, M.K.; Özkan, H.; Dragovich, A.Y.; Kochieva, E.Z. Chromosome and Molecular Analyses Reveal Significant Karyotype Diversity and Provide New Evidence on the Origin of Aegilops columnaris. Plants 2021, 10, 956.

Abstract

Aegilops columnaris Zhuk. is tetraploid grass species (2n=4x=28, UcUcXcXc) closely related to Ae. neglecta and growing in Western Asia and a western part of the Fertile Crescent. Genetic diversity of Ae. columnaris was assessed using C-banding, FISH, nuclear and chloroplast (cp)DNA analyses, and gliadin electrophoresis. Cytogenetically Ae. columnaris was subdivided into two groups, C-I and C-II, showing different karyotype structure, C-banding and FISH patterns. Group C-I was more similar to Ae. neglecta. All types of markers revealed significant heterogeneity of the C-II group, although group C-I was also polymorphic. Two chromosomal groups were consistent with plastogroups identified in a current study based on sequencing of three chloroplast intergenic spacer regions. The similarity of group C-I of Ae. columnaris with Ae. neglecta and their distinctness from C-II indicate that divergence of the C-I group was associated with minor genome modifications. Group C-II could emerge from C-I relatively recently, probably due to introgression from another Aegilops species followed by a reorganization of the parental genomes. Most C-II accessions were collected from the very narrow geographic region, and they might originate from a common ancestor. We suggest that the C-II group is at the initial stage of species divergence and undergoing an extensive speciation process.

Keywords

Aegilops columnaris; Ae. neglecta; C-banding; FISH; gliadin electrophoresis; sequencing; U31 nuclear DNA fragment; plastogroups; evolution

Subject

Biology and Life Sciences, Anatomy and Physiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.