Preprint
Article

This version is not peer-reviewed.

The Design of Tunable Photonic Crystal Biosensor With the Integration of PN Phase Shifter Using PIC Design Approach

Submitted:

23 April 2021

Posted:

26 April 2021

You are already at the latest version

Abstract
Silicon-based photonic integrated circuit (PIC) is a research focus in producing high-density photonics. One of the potential applications of silicon PIC is the sensing and measurement system. In this work, we use the one-dimensional photonic crystal (1D-PhC) cavity design which and utilize it at the PIC level design. The 1D PhC design used as the compact model has the same characteristics as experimentally demonstrated in previous works. The compact model is made from the S-parameter extraction of the 1D-PhC device which is done by using Lumerical FDTD software. The PIC design integrates the 1D-PhC device as a sensing component with a PN-phase shifter (PN-PS) to function as a refractive index (RI) sensor calibration or tuning circuit. A custom design of PN-PS device is used by simulating and extracting the bias voltage-effective index (bias-Neff) data by using Lumerical DEVICE and MODE into the circuit simulator. The circuit-level simulation is done by using Lumerical Interconnect software. Finally, we show the GDSII layout design of the 1D-PhC based photonic sensor calibration circuit with an analysis of generic silicon PIC design rules. The designed PIC is applicable for the bio-sensing applications and photonic SOC component. This work also shows the promise of PIC design approach for further PIC development.
Keywords: 
;  ;  ;  ;  
Subject: 
Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated