Preprint
Article

P^N bridged Cu(I) Dimers Featuring both TADF and Phosphorescence. From Overview Towards Detailed Case Study of the Excited Singlet and Triplet States.

This version is not peer-reviewed.

Submitted:

11 April 2021

Posted:

12 April 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
We present an overview over eight brightly luminescent Cu(I) dimers of the type Cu2X2(PN)3 with X = Cl, Br, I and P^N = 2-diphenylphosphino-pyridine (Ph2Ppy), 2-diphenylphosphino-pyrimidine (Ph2Ppym), 1-diphenylphosphino-isoquinoline (Ph2Piqn) including three new crystal structures (Cu2Br2(Ph2Ppy)3, 1-Br, Cu2I2(Ph2Ppym)3, 2-I, and Cu2I2(Ph2Piqn)3, 3-I). However, we mainly focus on their photo-luminescence properties. All compounds exhibit combined thermally activated delayed fluorescence (TADF) and phosphorescence at ambient temperature. Emission color, decay time, and quantum yield varies over large ranges. For deeper characterization, we select Cu2I2(Ph2Ppy)3, 1-I, showing a quantum yield of 81 %. DFT and SOC-TDDFT calculations provide insight into the electronic structures of the singlet S1 and triplet T1 states. Both stem from metal+iodide-to-ligand charge transfer transitions. Evaluation of the emission decay dynamics, measured from 1.2 ≤ T ≤ 300 K, gives ∆E(S1-T1) = 380 cm-1 (47 meV), a transition rate of k(S1→S0) = 2.25×106 s-1 (445 ns), T1 zero-field splittings, transition rates from the triplet substates, and spin-lattice relaxation times. We also discuss the interplay of S1-TADF and T1-phosphorescence. The combined emission paths shorten the overall decay time. For OLED applications, utilization of both singlet and triplet harvesting can be highly favorable for improvement of the device performance.
Keywords: 
Subject: 
Chemistry and Materials Science  -   Analytical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated