Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Dysregulated Metabolites Serve as Novel Biomarkers for Metabolic Diseases Caused by Vaping and Cigarette Smoking

Version 1 : Received: 7 April 2021 / Approved: 9 April 2021 / Online: 9 April 2021 (14:30:42 CEST)

A peer-reviewed article of this Preprint also exists.

Wang, Q.; Ji, X.; Rahman, I. Dysregulated Metabolites Serve as Novel Biomarkers for Metabolic Diseases Caused by E-Cigarette Vaping and Cigarette Smoking. Metabolites 2021, 11, 345. Wang, Q.; Ji, X.; Rahman, I. Dysregulated Metabolites Serve as Novel Biomarkers for Metabolic Diseases Caused by E-Cigarette Vaping and Cigarette Smoking. Metabolites 2021, 11, 345.

Abstract

Metabolites are essential intermediate products in metabolism, and metabolism dysregulation indicates different types of diseases. Previous studies have shown that cigarette smoke dysregulated metabolites; however, limited information is available with electronic cigarette (E-cig) vaping. We hypothesized that E-cig vaping and cigarette smoking altered systemic metabolites, and we propose to understand the specific metabolic signature between E-cig users and cigarette smokers. Plasma from non-smoker controls, cigarette smokers, and e-cig users were collected, and metabolites were identified by UPLC–MS (Ultraperformance liquid chromatography-mass spectrometer). Nicotine degradation was activated by e-cig vaping and cigarette smoking with increased concentrations of cotinine, cotinine N-oxide, (S)-nicotine, and (R)-6-hydroxynicotine. Additionly, we found significant decreased concentrations in metabolites associated with tricarboxylic acid (TCA) cycle pathways in e-cig users verses cigarette smokers, such as: D-glucose, (2R,3S)-2,3-dimethylmalate, (R)-2-hydroxyglutarate, O-phosphoethanolamine, malathion, D-threo-isocitrate, malic acid, and 4-acetamidobutanoic acid. Cigarette smoking significant up-regulated sphingolipid metabolites, such as D-sphingosine, ceramide, N-(octadecanoyl)-sphing-4-enine, N-(9Z-octadecenoyl)-sphing-4-enine, and N-[(13Z)-docosenoyl]sphingosine, verses e-cig vaping. Overall, e-cig vaping dysregulated TCA cycle realted metabolites while cigarette smoking altered sphingolipid metabolites. Both e-cig and cigarette smoke increased nicotinic metabolites. Therefore, specific metabolic signature altered by e-cig vaping and cigarette smoking could serve as potential systemic biomarkers for early cardiopulmonary diseases.

Keywords

Metabolome; TCA; Lipids; e-cigarette; cigarette; biomarkers

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.