Preprint
Article

Automatic Detection of Pneumonia in Chest X-Rays using Lobe Deep Residual Network

This version is not peer-reviewed.

Submitted:

07 April 2021

Posted:

08 April 2021

Read the latest preprint version here

Abstract
One of the critical tools for early detection and subsequent evaluation of the incidence of lung diseases is chest radiography. At a time when the speed and reliability of results, especially for COVID-19 positive patients, is important, the development of applications that would facilitate the work of untrained staff involved in the evaluation is also crucial. Our model takes the form of a simple and intuitive application, into which you only need to upload X-rays: tens or hundreds at once. In just a few seconds, the physician will determine the patient's diagnosis, including the percentage accuracy of the estimate. While the original idea was a mere binary classifier that could tell if a patient was suffering from pneumonia or not, in this paper we present a model that distinguishes between a bacterial disease, a viral infection, or a finding caused by COVID-19. The aim of this research is to demonstrate whether pneumonia can be detected or even spatially localized using a uniform, supervised classification.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

432

Views

631

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated