Preprint
Article

This version is not peer-reviewed.

Automatic Detection of Pneumonia in Chest X-Rays using Lobe Deep Residual Network

Submitted:

27 April 2021

Posted:

27 April 2021

You are already at the latest version

Abstract
One of the critical tools for early detection and subsequent evaluation of the incidence of lung diseases is chest radiography. At a time when the speed and reliability of results, especially for COVID-19 positive patients, is important, the development of applications that would facilitate the work of untrained staff involved in the evaluation is also crucial. Our model takes the form of a simple and intuitive application, into which you only need to upload X-rays: tens or hundreds at once. In just a few seconds, the physician will determine the patient's diagnosis, including the percentage accuracy of the estimate. While the original idea was a mere binary classifier that could tell if a patient was suffering from pneumonia or not, in this paper we present a model that distinguishes between a bacterial disease, a viral infection, or a finding caused by COVID-19. The aim of this research is to demonstrate whether pneumonia can be detected or even spatially localized using a uniform, supervised classification.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated