Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Photoionization Cross Sections of Carbon-Like N+ near the K-Edge (390 eV - 440 eV)

Version 1 : Received: 2 April 2021 / Approved: 5 April 2021 / Online: 5 April 2021 (14:22:55 CEST)

A peer-reviewed article of this Preprint also exists.

Mosnier, J.-P.; Kennedy, E.T.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Blancard, C.; McLaughlin, B.M. Photoionization Cross-Sections of Carbon-Like N+ Near the K-Edge (390–440 eV). Atoms 2021, 9, 27. Mosnier, J.-P.; Kennedy, E.T.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Blancard, C.; McLaughlin, B.M. Photoionization Cross-Sections of Carbon-Like N+ Near the K-Edge (390–440 eV). Atoms 2021, 9, 27.

Abstract

High-resolution K-shell photoionization cross-sections for the C-like atomic nitrogen ion (N+) are reported in the 398 eV (31.15 Å) to 450 eV (27.55 Å) energy (wavelength) range. The results were obtained from absolute ion-yield measurements using the SOLEIL synchrotron radiation facility for spectral bandpasses of 65 meV or 250 meV. In the photon energy region 398 eV - 403 eV, 1s⟶2p autoionizing resonance states dominated the cross section spectrum. Analyses of the experimental profiles yielded resonance strengths and Auger widths. In the 415 eV - 440 eV photon region 1s⟶1s2s22p2 4Pnp and 1s⟶1s2s22p2 2Pnp resonances forming well-developed Rydberg series up n=7 and n=8 , respectively, were identified in both the single and double ionization spectra. Theoretical photoionization cross-section calculations, performed using the R-matrix plus pseudo-states (RMPS) method and the multiconfiguration Dirac-Fock (MCDF) approach were bench marked against these high-resolution experimental results. Comparison of the state-of-the-art theoretical work with the experimental studies allowed the identification of new resonance features. Resonance strengths, energies and Auger widths (where available) are compared quantitatively with the theoretical values. Contributions from excited metastable states of the N+ ions were carefully considered throughout.

Keywords

atomic data; inner-shell photoionization; atomic nitrogen ion

Subject

Physical Sciences, Acoustics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.