Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Preparation and Electron-Beam Surface Modification of Novel TiNi Material for Medical Applications

Version 1 : Received: 3 April 2021 / Approved: 5 April 2021 / Online: 5 April 2021 (14:11:37 CEST)

A peer-reviewed article of this Preprint also exists.

Anikeev, S.G.; Shabalina, A.V.; Kulinich, S.A.; Artyukhova, N.V.; Korsakova, D.R.; Yakovlev, E.V.; Vlasov, V.A.; Kokorev, O.V.; Hodorenko, V.N. Preparation and Electron-Beam Surface Modification of Novel TiNi Material for Medical Applications. Appl. Sci. 2021, 11, 4372. Anikeev, S.G.; Shabalina, A.V.; Kulinich, S.A.; Artyukhova, N.V.; Korsakova, D.R.; Yakovlev, E.V.; Vlasov, V.A.; Kokorev, O.V.; Hodorenko, V.N. Preparation and Electron-Beam Surface Modification of Novel TiNi Material for Medical Applications. Appl. Sci. 2021, 11, 4372.

Abstract

A new approach to fabricate TiNi surfaces combining the advantages of both monolithic and porous materials for implants is used in this work. New materials were obtained by depositing a porous TiNi powder onto monolithic TiNi plates followed by sintering at 1200°C. Then, further modification of the material surface with a high-current-pulsed electron beam (HCPEB) was carried out. Three materials obtained (one after sintering and two after subsequent beam treatment by 20 and 30 pulses, respectively) were studied by XRD, SEM, EDX, EIS methods, profilometry and OCP measurements. Structural and compositional changes caused by HCPEB treatment were investigated. Surface properties of the samples during their storage in saline for 10 days were studied and a model experiment with cell growth (MCF-7) was carried out for the sample unmodified with electron beam to detect cell appearance on different surface locations.

Keywords

TiNi; high-current pulsed electron beam; porous coating; surface modification; EIS in saline; cell growth.

Subject

Chemistry and Materials Science, Surfaces, Coatings and Films

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.