Preprint
Article

This version is not peer-reviewed.

Distribution-Based Entropy Weighting Clustering of Skewed Time Series

A peer-reviewed article of this preprint also exists.

Submitted:

06 April 2021

Posted:

07 April 2021

Read the latest preprint version here

Abstract
The goal of clustering is to identify common structures in a data set by forming groups of homogeneous objects. The observed characteristics of many economic time series have motivated the development of classes of distributions that can accommodate properties such as heavy tails and skewness. Thanks to its flexibility, the Skew Exponential Power Distribution (also called Skew Generalized Error Distribution) ensures a unified and general framework for clustering possibly skewed time series. This paper develop a clustering procedure of model-based type, assuming that the time series are generated by the same underlying probability distribution but with different parameters. Moreover, we propose to optimally combine all the parameter estimates to form the clusters with an entropy weighing k-means approach. The usefulness of the proposal is showed by means of an application to financial time series, showing also how the obtained clusters can be used to form portfolio of stocks.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated